用户名: 密码: 验证码:
Water-Channel Study of Flow and Turbulence Past a Two-Dimensional Array of Obstacles
详细信息    查看全文
  • 作者:Annalisa Di Bernardino (1)
    Paolo Monti (1)
    Giovanni Leuzzi (1)
    Giorgio Querzoli (2)

    1. DICEA
    ; Universit脿 di Roma 鈥淟a Sapienza鈥? Via Eudossiana 18 ; 00184 ; Rome ; Italy
    2. Dipartimento di Ingegneria del Territorio
    ; Universit脿 di Cagliari ; Via Marengo 3 ; 09123 ; Cagliari ; Italy
  • 关键词:Building array ; Image analysis ; Reynolds stress ; Roughness sublayer ; Urban flow ; Water ; channel
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:155
  • 期:1
  • 页码:73-85
  • 全文大小:3,981 KB
  • 参考文献:1. Ahmad, K, Khare, M, Chaudhry, KK (2005) Wind tunnel simulation studies on dispersion at urban street canyon and intersections - a review. J Wind Eng Ind Aerodyn 93: pp. 697-717 CrossRef
    2. Amicarelli, A, Salizzoni, P, Leuzzi, G, Monti, P, Soulhac, L, Cierco, F-X, Leboeuf, F (2012) Sensitivity of a concentration fluctuation model to dissipation rate estimates. Int J Environ Pollut 48: pp. 164-173 CrossRef
    3. Baik, J-J, Park, R-S, Chun, H-Y, Kim, J-J (2000) A laboratory model of urban street canyon flows. J Appl Meteorol 39: pp. 1592-1600 CrossRef
    4. Biltoft C (2001) Customer report for Mock Urban Setting Test. Report No. WDTC-FR-01-121 U.S. Army Dugway Proving Ground, Dugway, UT, 23 pp
    5. Brevis, W, Garc矛a-Villalba, M, Nino, Y (2014) Experimental and large eddy simulation study of the flow developed by a sequence of lateral obstacles. Environ Fluid Mech 14: pp. 873-893 CrossRef
    6. Cantelli A, Monti P, Leuzzi G (2014) Numerical study of the urban geometrical representation impact in a surface energy budget model. Environ Fluid Mech. doi:10.1007/s10652-013-9309-0
    7. Casonato, M, Gallerano, F (1990) A finite-difference self-adaptive mesh solution of a flow in a sedimentation tank. Int J Numer Methods Fluids 10: pp. 697-711 CrossRef
    8. Cassiani, M, Franzese, P, Giostra, U (2005) A PDF micro-mixing model of dispersion for atmospheric flow. Part I: development of the model, application to homogeneous turbulence and neutral boundary layer. Atmos Environ 39: pp. 1457-1469 CrossRef
    9. Caton, F, Britter, RE, Dalziel, S (2003) Dispersion mechanism in a street canyon. Atmos Environ 37: pp. 693-702 CrossRef
    10. Cenedese, A, Prete, Z, Miozzi, M, Querzoli, G (2005) A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp Fluids 39: pp. 322-335 CrossRef
    11. Cheng, H, Castro, IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104: pp. 229-259 CrossRef
    12. Cui, Z, Cai, X, Baker, CJ (2004) Large-eddy simulation of turbulent flow in a street canyon. Q J R Meteorol Soc 130: pp. 1373-1394 CrossRef
    13. Fernando, HJS (2010) Fluid dynamics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42: pp. 365-389 CrossRef
    14. Fernando, HJS, Lee, SM, Anderson, J, Princevac, M, Pardyjak, E, Grossman-Clarke, S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1: pp. 107-164 CrossRef
    15. Fortini, S, Querzoli, G, Espa, S, Cenedese, A (2013) Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp Fluids 54: pp. 1609 CrossRef
    16. Gowardhan AA, Pardyjak ER, Senocak I, Brown MJ (2007) Investigation of Reynolds stresses in a 3D idealized urban area using large eddy simulation. In: American Meteorological Society seventh symposium on urban environment, San Diego, CA, 8 pp
    17. Hang, J, Li, Y, Buccolieri, R, Sandberg, M, Sabatino, S (2012) On the contribution of mean flow and turbulence to city breathability: the case of long streets with tall buildings. Sci Total Environ 416: pp. 362-373 CrossRef
    18. Hinze J (1975) Turbulence. McGraw-Hill, New York, 790 pp
    19. Huq, P, Franzese, P (2013) Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model. Boundary-Layer Meteorol 147: pp. 103-121 CrossRef
    20. Hussain M, Lee BM (1980) An investigation of wind forces on three dimensional roughness elements in a simulated boundary layer flow. Report BS 56. Department of Building Science, University of Sheffield, 81 pp
    21. Jackson, PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111: pp. 15-25 CrossRef
    22. Jeong, SJ, Andrews, MJ (2002) Application of the k鈥$$\epsilon $$ 系 turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmos Environ 36: pp. 1137-1145 CrossRef
    23. Kanda, M, Morikawi, R, Kasamatsu, F (2004) Large eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112: pp. 343-368 CrossRef
    24. Kastner-Klein, P, Rotach, MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111: pp. 55-84 CrossRef
    25. Kastner-Klein, P, Fedorovich, E, Rotach, MW (2001) A wind tunnel study of organized and turbulent air motions in urban street canyons. J Wind Eng Ind Aerodyn 89: pp. 849-861 CrossRef
    26. Kim, J-J, Baik, J-J (1999) A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons. J Appl Meteorol 38: pp. 1249-1261 CrossRef
    27. Kim, J-J, Baik, J-J (2001) Urban street canyon flows with bottom heating. Atmos Environ 35: pp. 3395-3404 CrossRef
    28. Leuzzi, G, Amicarelli, A, Monti, P, Thomson, DJ (2012) A 3D Lagrangian micromixing dispersion model LAGFLUM and its validation with a wind tunnel experiment. Atmos Environ 54: pp. 117-126 CrossRef
    29. Li, X-X, Britter, RE, Koh, TY, Nordford, LK, Liu, C-H, Entekhabi, D, Leung, DYC (2010) Large-eddy simulation of flow and pollutant transport in urban street canyons with ground heating. Boundary-Layer Meteorol 137: pp. 187-204 CrossRef
    30. Lien, F-S, Yee, B, Cheng, Y (2004) Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach. J Wind Eng Ind Aerodyn 92: pp. 117-158 CrossRef
    31. Liu, C-H, Barth, MC, Leung, DYC (2004) Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios. J Appl Meteorol 143: pp. 1410-1424 CrossRef
    32. Luhar, AK, Thatcher, M, Hurley, PJ (2014) Evaluating a building averaged urban surface scheme in an operational mesoscale model for flow and dispersion. Atmos Environ 88: pp. 47-58 CrossRef
    33. Miozzi, M, Jacob, B, Olivieri, A (2008) Performances of feature tracking in turbulent boundary layer investigation. Exp Fluid 45: pp. 765-780 CrossRef
    34. Monti, P, Leuzzi, G (1996) A closure to derive a three-dimensional well-mixed trajectory model for non-Gaussian, inhomogeneous turbulence. Boundary-Layer Meteorol 80: pp. 311-331 CrossRef
    35. Oke T (1987) Boundary-layer climates. Routledge, London, 435 pp
    36. Park S, Baik J, Han B (2013) Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ Fluid Mech 1鈥?6
    37. Pelliccioni, A, Monti, P, Leuzzi, G (2014) An alternative wind profile formulation for urban areas in neutral conditions. Environ Fluid Mech.
    38. Princevac, M, Baik, J-J, Li, X, Pan, H, Park, S-B (2010) Lateral channeling within rectangular arrays of cubical obstacles. J Wind Eng Ind Aerodyn 98: pp. 337-385 CrossRef
    39. Rotach, MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33: pp. 4001-4008 CrossRef
    40. Rotach, MW, Vogt, R, Bernhofer, C, Batchvarova, E, Christen, A, Clappier, A, Feddersen, B, Gryning, S-E, Martucci, G, Mayer, H, Mitev, V, Oke, TR, Parlow, E, Richner, H, Roth, M, Roulet, Y-A, Ruffieux, D, Salmond, JA, Schatzmann, M, Voogt, JA (2005) BUBBLE鈥攁n Urban Boundary Layer Meteorology Project. Theor Appl Meteorol 81: pp. 231-261
    41. Salamanca, F, Martilli, A, Tewari, M, Chen, F (2010) A study of the urban boundary layer using different parameterizations and high-resolution urban canopy parameters with WRF (The case of Houston). J Appl Meteorol Climatol 50: pp. 1107-1128 CrossRef
    42. Salizzoni, P, Marro, M, Soulhac, L, Grosjean, N, Perkins, RJ (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Boundary-Layer Meteorol 141: pp. 393-414 CrossRef
    43. Sawford, BL (2006) Lagrangian stochastic modelling of chemical reactions in a scalar mixing layer. Boundary-Layer Meteorol 180: pp. 529-556
    44. Snyder WH (1981) Guideline for fluid modeling of atmospheric diffusion. EPA Tech. Rep. EPA-600/8-81-009, 185 pp
    45. Soulhac, L, Perkins, RJ, Salizzoni, P (2008) Flow in a street canyon for any external wind direction. Boundary-Layer Meteorol 126: pp. 365-388 CrossRef
    46. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp
    47. Uehara, K, Murakami, S, Oikawa, S, Wakamatsu, S (2000) Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyon. Atmos Environ 34: pp. 1553-1562 CrossRef
    48. Xie Z, Castro IP (2006) LES and RANS for turbulent wall-mounted obstacles. Flow Turbul Combust 76:291鈥?12
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
A neutral boundary layer was generated in the laboratory to analyze the mean velocity field and the turbulence field within and above an array of two-dimensional obstacles simulating an urban canopy. Different geometrical configurations were considered in order to investigate the main characteristics of the flow as a function of the aspect ratio (AR) of the canopy. To this end, a summary of the two-dimensional fields of the fundamental turbulence parameters is given for AR ranging from 1 to 2. The results show that the flow field depends strongly on AR only within the canyon, while the outer flow seems to be less sensitive to this parameter. This is not true for the vertical momentum flux, which is one of the parameters most affected by AR, both within and outside the canyon. The experiments also indicate that, when \(AR \lesssim 1.5\) (i.e. the skimming-flow regime), the roughness sub-layer extends up to a height equal to 1.25 times the height of the obstacles \((H)\) , surmounted by an inertial sub-layer that extends up to \(2.7H\) . In contrast, for \(AR>1.5\) (i.e. the wake-interference regime) the inertial sub-layer is not present. This has significant implications when using similarity laws for deriving wind and turbulence profiles in canopy flows. Furthermore, two estimations of the viscous dissipation rate of turbulent kinetic energy of the flow are given. The first one is based on the fluctuating strain rate tensor, while the second is related to the mean strain rate tensor. It is shown that the two expressions give similar results, but the former is more complicated, suggesting that the latter might be used in numerical models with a certain degree of reliability. Finally, the data presented can also be used as a dataset for the validation of numerical models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700