用户名: 密码: 验证码:
Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)
详细信息    查看全文
  • 作者:Debora Pierucci (1)
    Haikel Sediri (1)
    Mahdi Hajlaoui (1) (2)
    Emilio Velez-Fort (1) (3)
    Yannick J. Dappe (4)
    Mathieu G. Silly (2)
    Rachid Belkhou (2)
    Abhay Shukla (3)
    Fausto Sirotti (2)
    Noelle Gogneau (1)
    Abdelkarim Ouerghi (1)

    1. CNRS-Laboratoire de Photonique et de Nanostructures
    ; Route de Nozay ; 91460 ; Marcoussis ; France
    2. Synchrotron-SOLEIL
    ; Saint-Aubin ; BP48 ; F91192 ; Gif sur Yvette Cedex ; France
    3. Universit茅 Pierre et Marie Curie (CNRS - IMPMC)
    ; 4 Pl. Jussieu ; 75005 ; Paris ; France
    4. Service de Physique de l鈥橢tat Condens茅 (CNRS URA2464)
    ; IRAMIS ; CEA Saclay ; 91191 ; Gif-Sur-Yvette ; France
  • 关键词:epitaxial graphene layer ; monolayer ; bilayer ; band gap opening ; Bernal stacking ; off ; axis silicon carbide ; electronic properties
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:1026-1037
  • 全文大小:2,208 KB
  • 参考文献:1. Costa Gir茫o, E, Liang, L B, Cruz-Silva, E, Filho, A G S, Meunier, V (2011) Emergence of a typical properties in assembled graphene nanoribbons. Phys. Rev. Lett. 107: pp. 135501 CrossRef
    2. Sprinkle, M, Ruan, M, Hu, Y, Hankinson, J, Rubio-Roy, M, Zhang, B, Wu, X, Berger, C, Heer, W A (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5: pp. 727-731 CrossRef
    3. Zhou, S Y, Gweon, G H, Fedorov, A V, First, P N, Heer, W A, Lee, D H, Guinea, F, Castro Neto, A H, Lanzara, A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6: pp. 770-775 CrossRef
    4. Son, Y W, Cohen, M L, Louie, S G (2006) Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97: pp. 216803 CrossRef
    5. Chen, Z H, Lin, Y M, Rooks, M J, Avouris, P (2007) Graphene nano-ribbon electronics. Physica E Lowdimens Syst. Nanostruct. 40: pp. 228-232 CrossRef
    6. Novoselov, K S, Geim, A K, Morozov, S V, Jiang, D, Zhang, Y, Dubonos, S V, Grigorieva, I V, Firsov, A A (2004) Electric field effect in atomically thin carbon films. Science 306: pp. 666-669 CrossRef
    7. Stankovich, S, Dikin, D A, Dommett, G H B, Kohlhaas, K M, Zimney, E J, Stach, E A, Piner, R D, Nguyen, S T, Ruoff, R S (2006) Graphene-based composite materials. Nature 442: pp. 282-286 CrossRef
    8. Hass, J, Heer, W A, Conrad, E H (2008) The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20: pp. 323202
    9. Varchon, F, Feng, R, Hass, J, Li, X, Nguyen, B N, Naud, C, Mallet, P, Veuillen, J Y, Berger, C, Conrad, E H (2007) Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 99: pp. 126805 CrossRef
    10. Forbeaux, I, Themlin, J M, Debever, J M (1998) Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 58: pp. 396-406 CrossRef
    11. Somani, P R, Somani, S P, Umeno, M (2006) Planer nanographenes from camphor by CVD. Chem. Phys. Lett. 430: pp. 56-59 CrossRef
    12. Sutter, P W, Flege, J I, Sutter, E A (2008) Epitaxial graphene on ruthenium. Nat. Mater. 7: pp. 406-411 CrossRef
    13. Reina, A, Jia, X T, Ho, J, Nezich, D, Son, H, Bulovic, V, Dresselhaus, M S, Kong, J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9: pp. 30-35 CrossRef
    14. Wang, J J, Zhu, M Y, Outlaw, R A, Zhao, X, Manos, D M, Holloway, B C (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42: pp. 2867-2872 CrossRef
    15. Wang, J J, Zhu, M Y, Outlaw, R A, Zhao, X, Manos, D M, Holloway, B C, Mammana, V P (2004) Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85: pp. 1265 CrossRef
    16. Berger, C, Song, Z M, Li, X B, Wu, X S, Brown, N, Naud, C, Mayou, D, Li, T B, Hass, J, Marchenkov, A N (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312: pp. 1191-1196 CrossRef
    17. Brey, L, Fertig, H (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 73: pp. 235411 CrossRef
    18. Nakada, K, Fujita, M, Dresselhaus, G, Dresselhaus, M S (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54: pp. 17954 CrossRef
    19. Han, M Y, 脰zyilmaz, B, Zhang, Y B, Kim, P (2007) Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98: pp. 206805 CrossRef
    20. Tapaszt贸, L, Dobrik, G, Lambin, P, Bir贸, L P (2008) Tailoring the atomic structure of graphene nanoribbons by STM lithography. Nat. Nanotechnol. 3: pp. 397-401 CrossRef
    21. Han, M Y, Brant, J C, Kim, P (2010) Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104: pp. 056801 CrossRef
    22. Bolotin, K I, Sikes, K J, Jiang, Z, Klima, M, Fudenberg, G, Hone, J, Kim, P, Stormer, H L (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146: pp. 351-355 CrossRef
    23. Hwang, E H, Adam, S, Sarma, S (2007) Transport in chemically doped graphene in the presence of adsorbed molecules. Phys. Rev. B 76: pp. 195421 CrossRef
    24. Moser, J, Barreiro, A, Bachtold, A (2007) Current-induced cleaning of graphene. Appl. Phys. Lett. 91: pp. 163513 CrossRef
    25. Camara, N, Rius, G, Huntzinger, J R, Tiberj, A, Mestres, N, Godignon, P, Camassel, J (2008) Selective epitaxial growth of graphene on SiC. Appl. Phys. Lett. 93: pp. 123503 CrossRef
    26. Rubio-Roy, M, Zaman, F, Hu, Y, Berger, C, Moseley, M W, Meindl, J D, Heer, W A (2010) Structured epitaxial graphene growth on SiC by selective graphitization using a patterned AlN cap. Appl. Phys. Lett. 96: pp. 082112 CrossRef
    27. Camara, N, Huntzinger, J R, Rius, G, Tiberj, A, Mestres, N, P茅rez-Murano, F, Godignon, P, Camassel, J (2009) Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B 80: pp. 125410 CrossRef
    28. Hicks, J, Tejeda, A, Taleb-Ibrahimi, A, Nevius, M S, Wang, F, Shepperd, K, Palmer, J, Bertran, F, F猫vre, P, Kunc, J (2013) A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 9: pp. 49-54 CrossRef
    29. Ohta, T, Bostwick, A, Seyller, T, Horn, K, Rotenberg, E (2006) Controlling the electronic structure of bilayer graphene. Science 313: pp. 951-954 CrossRef
    30. Ouerghi, A, Silly, M G, Marangolo, M, Mathieu, C, Eddrief, M, Picher, M, Sirotti, F, Moussaoui, S, Belkhou, R (2012) Large-area and high-quality epitaxial graphene on off-axis SiC wafers. ACS Nano 6: pp. 6075-6082 CrossRef
    31. Nicotra, G, Ramasse, Q M, Deretzis, I, Magna, A, Spinella, C, Giannazzo, F (2013) Delaminated graphene at silicon carbide facets: Atomic scale imaging and spectroscopy. ACS Nano 7: pp. 3045-3052 CrossRef
    32. Tanaka, S, Morita, K, Hibino, H (2010) Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 81: pp. 041406 CrossRef
    33. Vecchio, C, Sonde, S, Bongiorno, C, Rambach, M, Yakimova, R, Raineri, V, Giannazzo, F (2011) Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Res. Lett. 6: pp. 269 CrossRef
    34. Lalmi, B, Girard, J C, Pallecchi, E, Silly, M, David, C, Latil, S, Sirotti, F, Ouerghi, A (2014) Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide. Sci. Rep. 4: pp. 4066 CrossRef
    35. Pallecchi, E, Lafont, F, Cavaliere, V, Schopfer, F, Mailly, D, Poirier, W, Ouerghi, A (2014) High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 4: pp. 4558 CrossRef
    36. Polack, F, Silly, M, Chauvet, C, Lagarde, B, Bergeard, N, Izquierdo, M, Chubar, O, Krizmancic, D, Ribbens, M, Duval, J P (2010) TEMPO: A new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conf. Proc. 1234: pp. 185-188 CrossRef
    37. Bergeard, N, Silly, M G, Krizmancic, D, Chauvet, C, Guzzo, M, Ricaud, J P, Izquierdo, M, Stebel, L, Pittana, P, Sergo, R (2011) Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. J. Synchrotron Radiat. 18: pp. 245-250 CrossRef
    38. Lewis, J P, Glaesemann, K R, Voth, G A, Fritsch, J, Demkov, A A, Ortega, J, Sankey, O F (2001) Further developments in the local-orbital density-functional-theory tight-binding method. Phys. Rev. B 64: pp. 195103 CrossRef
    39. Lewis, J P, Jel铆nek, P, Ortega, J, Demkov, A A, Trabada, D G, Haycock, B, Wang, H, Adams, G, Tomfohr, J K, Abad, E (2011) Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 248: pp. 1989-2007
    40. Jel铆nek, P, Wang, H, Lewis, J P, Sankey, O F, Ortega, J (2005) Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys. Rev. B 71: pp. 235101 CrossRef
    41. Sankey, O F, Niklewski, D J (1989) Ab initio multicenter tight-binding for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40: pp. 3979-3995 CrossRef
    42. Basanta, M A, Dappe, Y J, Jel铆nek, P, Ortega, J (2007) Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comp. Mater. Sci. 39: pp. 759-766 CrossRef
    43. Dappe, Y J, Ortega, J, Flores, F (2009) Intermolecular interaction in density functional theory: Application to carbon nanotubes and fullerenes. Phys. Rev. B 79: pp. 165409 CrossRef
    44. 艩vec, M, Merino, P, Dappe, Y J, Gonz谩lez, C, Abad, E, Jel铆nek, P, Martin-Gago, J A (2012) van der Waals interactions mediating the cohesion of fullerenes on graphene. Phys. Rev. B 86: pp. 121407 CrossRef
    45. Ouerghi, A, Balan, A, Castelli, C, Picher, M, Belkhou, R, Eddrief, M, Silly, M G, Marangolo, M, Shukla, A, Sirotti, F (2012) Epitaxial graphene on single domain 3C-SiC (100) thin films grown on off-axis. Appl. Phys. Lett. 101: pp. 021603 CrossRef
    46. Michon, A, V茅zian, S, Ouerghi, A, Zielinski, M, Chassagne, T, Portail, M (2010) Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Appl. Phys. Lett. 97: pp. 171909 CrossRef
    47. Giannazzo, F, Deretzis, I, Nicotra, G, Fisichella, G, Spinella, C, Roccaforte, F, Magna, A (2014) Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Appl. Surf. Sci. 291: pp. 53-57 CrossRef
    48. Huang, H, Wong, S L, Tin, C C, Luo, Z Q, Shen, Z X, Chen, W, Wee, A T S (2011) Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 110: pp. 014308 CrossRef
    49. Pimenta, M A, Dresselhaus, G, Dresselhaus, M S, Can莽ado, L G, Jorio, A, Saito, R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9: pp. 1276-1291 CrossRef
    50. Burnett, T, Yakimova, R, Kazakova, O (2011) Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett. 11: pp. 2324-2328 CrossRef
    51. Gogneau, N, Balan, A, Ridene, M, Shukla, A, Ouerghi, A (2012) Control of the degree of surface graphitization on 3C-SiC(100)/Si(100). Surf. Sci. 606: pp. 217-220 CrossRef
    52. Filleter, T, Emtsev, K V, Seyller, T, Bennewitz, R (2008) Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93: pp. 133117 CrossRef
    53. Coletti, C, Emtsev, K V, Zakharov, A A, Ouisse, T, Chaussende, D, Starke, U (2011) Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 99: pp. 081904 CrossRef
    54. Emtsev, K V, Speck, F, Seyller, T, Ley, L, Riley, J D (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77: pp. 155303 CrossRef
    55. Penuelas, J, Ouerghi, A, Lucot, D, David, C, Gierak, J, Estrade-Szwarckopf, H, Andreazza-Vignolle, C (2009) Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B 79: pp. 033408 CrossRef
    56. Jabakhanji, B, Michon, A, Consejo, C, Desrat, W, Portail, M, Tiberj, A, Paillet, M, Zahab, A, Cheynis, F, Lafont, F (2014) Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing. Phys. Rev. B 89: pp. 085422 CrossRef
    57. Ostler, M, Deretzis, I, Mammadov, S, Giannazzo, F, Nicotra, G, Spinella, C, Seyller, T, Magna, A (2013) Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 88: pp. 085408 CrossRef
    58. Jayasekera, T, Xu, S, Kim, K W, Nardelli, M B (2011) Electronic properties of the graphene/6H-SiC(000-1) interface: A first-principles study. Phys. Rev. B 84: pp. 035442 CrossRef
    59. Ohta, T, Bostwick, A, Mcchesney, J L, Seyller, T, Horn, K, Rotenberg, E (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98: pp. 206802 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on \((11\bar 20)\) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on \((11\bar 20)\) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700