用户名: 密码: 验证码:
Role of miR-155 in drug resistance of breast cancer
详细信息    查看全文
  • 作者:Dan-dan Yu (1) (2)
    Meng-meng Lv (1) (2)
    Wei-xian Chen (1) (2)
    Shan-liang Zhong (3)
    Xiao-hui Zhang (3)
    Lin Chen (2)
    Teng-fei Ma (3)
    Jin-hai Tang (2)
    Jian-hua Zhao (3)

    1. The First Clinical School of Nanjing Medical University
    ; Baiziting 42 ; Nanjing ; China ; 210009
    2. Department of General Surgery
    ; Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province ; Baiziting 42 ; Nanjing ; China ; 210009
    3. Center of Clinical Laboratory
    ; Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province ; Baiziting 42 ; Nanjing ; China ; 210009
  • 关键词:MicroRNA ; miR ; 155 ; Drug resistance ; Breast cancer
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:36
  • 期:3
  • 页码:1395-1401
  • 全文大小:577 KB
  • 参考文献:1. Jemal, A, Bray, F, Center, MM, Ferlay, J, Ward, E, Forman, D (2011) Global cancer statistics. CA Cancer J Clin 61: pp. 69-90 CrossRef
    2. Pasquier, J, Magal, P, Boulange-Lecomte, C, Webb, G, Foll, F (2011) Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model. Biol Direct 6: pp. 5 CrossRef
    3. Bartel, DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: pp. 281-297 CrossRef
    4. Tang, R, Li, L, Zhu, D, Hou, D, Cao, T, Gu, H (2012) Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 22: pp. 504-515 CrossRef
    5. Kutanzi, KR, Yurchenko, OV, Beland, FA, Checkhun, VF, Pogribny, IP (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics 2: pp. 171-185 CrossRef
    6. Teng, G, Papavasiliou, FN (2009) Shhh! Silencing by microRNA-155. Philos Trans R Soc Lond B Biol Sci 364: pp. 631-637 CrossRef
    7. Ouyang, M, Li, Y, Ye, S, Ma, J, Lu, L, Lv, W (2014) MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One 9: pp. e96228 CrossRef
    8. Cui, X, Guo, Y, Yao, H (2008) Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao 28: pp. 1813-1815
    9. Clurman, BE, Hayward, WS (1989) Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol Cell Biol 9: pp. 2657-2664
    10. Sandhu, SK, Volinia, S, Costinean, S, Galasso, M, Neinast, R, Santhanam, R (2012) MiR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A 109: pp. 20047-20052 CrossRef
    11. Zeng, H, Fang, C, Nam, S, Cai, Q, Long, X (2014) The clinicopathological significance of MicroRNA-155 in breast cancer: a meta-analysis. Biomed Res Int 2014: pp. 1-7 CrossRef
    12. Zhang, JLQM (2013) Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res 25: pp. 46-54
    13. Mattiske, S, Suetani, RJ, Neilsen, PM, Callen, DF (2012) The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomark 21: pp. 1236-1243 CrossRef
    14. Neilsen, PM, Noll, JE, Mattiske, S, Bracken, CP, Gregory, PA, Schulz, RB (2013) Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32: pp. 2992-3000 CrossRef
    15. Kong, W, Yang, H, He, L, Zhao, JJ, Coppola, D, Dalton, WS (2008) MicroRNA-155 is regulated by the transforming growth factor /Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28: pp. 6773-6784 CrossRef
    16. Johansson J, Berg T, Kurzejamska E. MiR-155-mediated loss of C/EBPb shifts the TGF-b response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013:5614鈥?624.
    17. Martin, EC, Krebs, AE, Burks, HE, Elliott, S, Baddoo, M, Collins-Burow, BM (2014) MiR-155 induced transcriptome changes in the MCF-7 breast cancer cell line leads to enhanced mitogen activated protein kinase signaling. Genes Cancer 5: pp. 353-364
    18. Shu-Rong Zheng, GGQZ (2013) Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors. Asian Pac J Cancer Prev 4: pp. 2361-2366 CrossRef
    19. Nho, RS (2014) FoxO3a and disease progression. World J Biol Chem 5: pp. 346 CrossRef
    20. Monsalve, M, Olmos, Y (2011) The complex biology of FOXO. Curr Drug Targets 12: pp. 1322-1350 CrossRef
    21. Huang, H, Tindall, DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120: pp. 2479-2487 CrossRef
    22. Kong, W, He, L, Coppola, M, Guo, J, Esposito, NN, Coppola, DCJ (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285: pp. 17869-17879 CrossRef
    23. Ling, N, Gu, J, Lei, Z, Li, M, Zhao, J, Zhang, HT (2013) MicroRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep 30: pp. 2111-2118
    24. Dijkers, PF, Medema, RH, Pals, C, Banerji, L, Thomas, NS, Lam, EW (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 20: pp. 9138-9148 CrossRef
    25. Grabinski, N, M枚llmann, K, Milde-Langosch, K, M眉ller, V, Schumacher, U, Brandt, B (2014) AKT3 regulates ErbB2, ErbB3 and estrogen receptor 伪 expression and contributes to endocrine therapy resistance of ErbB2+ breast tumor cells from Balb-neuT mice. Cell Signal 26: pp. 1021-1029 CrossRef
    26. Brown, I, Shalli, K, McDonald, SL, Moir, SE, Hutcheon, AW, Heys, SD (2004) Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 6: pp. R601-R607 CrossRef
    27. Raina, D, Uchida, Y, Kharbanda, A, Rajabi, H, Panchamoorthy, G, Jin, C (2014) Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 33: pp. 3422-3431 CrossRef
    28. Liam O, Connor AS, Lorraine A, O Reilly GH, Jerry M, Adams SCA, Huang DCS. Bim bang in cell death O鈥機onnor L, Strasser A, O鈥橰eilly A et al. (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis EMBO J. 17, 384鈥?95. Immunology Today 1998;19:99.
    29. Sonenshein, SGAG (2004) Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 24: pp. 8681-8690 CrossRef
    30. Shaocong Guo, YLQT (2012) DEF1 down-regulates ER鈥攁 expression and confers tamoxifen resistance in breast cancer. PLoS ONE 12: pp. e52380
    31. Tang, TT, Dowbenko, D, Jackson, A, Toney, L, Lewin, DA, Dent, AL (2002) The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem 277: pp. 14255-14265 CrossRef
    32. Skurk, C, Maatz, H, Kim, HS, Yang, J, Abid, MR, Aird, WC (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279: pp. 1513-1525 CrossRef
    33. Tran, H, Brunet, A, Grenier, JM, Datta, SR, Fornace, AJ, DiStefano, PS (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296: pp. 530-534 CrossRef
    34. Park, S, Guo, J, Kim, D, Cheng, JQ (2009) Identification of 24p3 as a direct target of Foxo3a regulated by interleukin-3 through the phosphoinositide 3-kinase/Akt pathway. J Biol Chem 284: pp. 2187-2193 CrossRef
    35. Paik, JH, Kollipara, R, Chu, G, Ji, H, Xiao, Y, Ding, Z (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: pp. 309-323 CrossRef
    36. Kalluri, R, Weinberg, RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: pp. 1420-1428 CrossRef
    37. Polyak, K, Weinberg, RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: pp. 265-273 CrossRef
    38. Lee, JM (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: pp. 973-981 CrossRef
    39. Johansson J, Berg T, Kurzejamska E. MiR-155-mediated loss of C/EBPb shifts the TGF-b response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer 2013; 5614鈥?624.
    40. Wang, J, Wu, J (2012) Role of miR-155 in breast cancer. Front Biosci (Landmark Ed) 17: pp. 2350-2355 CrossRef
    41. Qu, H, Fang, L, Duan, L, Long, X (2014) Expression of ABCG2 and p-glycoprotein in residual breast cancer tissue after chemotherapy and their correlation with epithelial-mesenchymal transition. Zhonghua Bing Li Xue Za Zhi 43: pp. 236-240
    42. Li W, Liu C, Wang H. Highexpression of Snail leads to the P-gp modulateds MDR in breast cancer cell MCF-7. Chin Pharmacol Bull. 2010:87鈥?0.
    43. Tang, Y, Wang, H, Chen, W (2010) Epithelial-mesenchymal transition modulates P-glucoprotein-induced multidrug resistance in breast cancer MCF-7 cells via p38-MAPK. China J Cancer Biother 2: pp. 144-148
    44. Zhou, GLYL (2014) Reduced BMP6 expression by DNA methylation contributes to EMT and drug resistance in breast cancer cells. Oncol Rep 2: pp. 581-588
    45. Settleman, ASAJ (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 34: pp. 4741-4751
    46. Sarkar, FH (2009) Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 5: pp. 489-500
    47. Neel, DS, Bivona, TG (2013) Secrets of drug resistance in NSCLC exposed by new molecular definition of EMT. Clin Cancer Res 19: pp. 3-5 CrossRef
    48. Narumiya, S, Tanji, M, Ishizaki, T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metast Rev 28: pp. 65-76 CrossRef
    49. Gilkes, DM, Xiang, L, Lee, SJ, Chaturvedi, P, Hubbi, ME, Wirtz, D (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci 111: pp. E384-E393 CrossRef
    50. Baranwal, S, Alahari, SK (2010) MiRNA control of tumor cell invasion and metastasis. Int J Cancer 126: pp. 1283-1290
    51. Weber, M, Kim, S, Patterson, N, Rooney, K, Searles, CD (2014) MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 306: pp. H1192-H1203 CrossRef
    52. Dagan, LN, Jiang, X, Bhatt, S, Cubedo, E, Rajewsky, K, Lossos, IS (2012) MiR-155 regulates HGAL expression and increases lymphoma cell motility. Blood 119: pp. 513-520 CrossRef
    53. Shi, JS, Zhang, J, Li, J (2014) Role of miR-155 in pathogenesis of diffuse large B cell lymphoma and its possible mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi 22: pp. 869-872
    54. Zhang, B, Zhang, Y, Dagher, MC, Shacter, E (2005) Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 65: pp. 6054-6062 CrossRef
    55. Ohmine, K, Nagai, T, Tarumoto, T, Miyoshi, T, Muroi, K, Mano, H (2003) Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem Cells 21: pp. 315-321 CrossRef
    56. Doublier, S, Riganti, C, Voena, C, Costamagna, C, Aldieri, E, Pescarmona, G (2008) RhoA silencing reverts the resistance to doxorubicin in human colon cancer cells. Mol Cancer Res 6: pp. 1607-1620 CrossRef
    57. Kobune, M, Chiba, H, Kato, J, Kato, K, Nakamura, K, Kawano, Y (2007) Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol Cancer Ther 6: pp. 1774-1784 CrossRef
    58. Nakagami, H, Pitzschke, A, Hirt, H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10: pp. 339-346 CrossRef
    59. Schaeffer, HJ, Weber, MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: pp. 2435-2444
    60. Kyriakis, JM, Avruch, J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92: pp. 689-737 CrossRef
    61. Hommes, DW, Peppelenbosch, MP, Deventer, SJH (2003) Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52: pp. 144-151 CrossRef
    62. Zhu, J, Chen, T, Yang, L, Li, Z, Wong, MM, Zheng, X (2012) Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One 7: pp. e46551 CrossRef
    63. Rahadiani, N, Takakuwa, T, Tresnasari, K, Morii, E, Aozasa, K (2008) Latent membrane protein-1 of Epstein-Barr virus induces the expression of B-cell integration cluster, a precursor form of microRNA-155, in B lymphoma cell lines. Biochem Biophys Res Commun 377: pp. 579-583 CrossRef
    64. Donnelly, SM, Paplomata, E, Peake, BM, Sanabria, E, Chen, Z, Nahta, R (2014) P38 MAPK contributes to resistance and invasiveness of HER2- overexpressing breast cancer. Curr Med Chem 21: pp. 501-510 CrossRef
    65. Mei, MXDZY (2014) A new 2a,5a,10b,14b-tetraacetoxy-4(20),11-taxadiene (SIA) derivative overcomes paclitaxel resistance by inhibiting MAPK signaling and increasing paclitaxel accumulation in breast cancer cells. Plos One 8: pp. e104317 CrossRef
    66. Donovan, JC, Milic, A, Slingerland, JM (2001) Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 276: pp. 40888-40895 CrossRef
    67. Heckler MM, HTCC. ERK/MAPK regulates ERRc expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer. FEBS J. 2014; 22442鈥?4341.
    68. Normanno, N, Campiglio, M, Maiello, MR, Luca, A, Mancino, M, Gallo, M (2008) Breast cancer cells with acquired resistance to the EGFR tyrosine kinase inhibitor Gefitinib show persistent activation of MAPK signaling. Breast Cancer Res Treat 112: pp. 25-33 CrossRef
    69. Nathan Corbett, M, Martin Alda, M (2015) On telomeres long and short. J Psychiatry Neurosci 1: pp. 3-4 CrossRef
    70. Misteli, T (2014) The long reach of telomeres. Genes Dev 28: pp. 2445-2446 CrossRef
    71. Dinami, R, Ercolani, C, Petti, E, Piazza, S, Ciani, Y, Sestito, R (2014) MiR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74: pp. 4145-4156 CrossRef
    72. Cerone, MA (2006) Telomerase inhibition enhances the response to anticancer drug treatment in human breast cancer cells. Mol Cancer Ther 5: pp. 1669-1675 CrossRef
    73. Ward RJ. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol. 2005.
    74. Lu, L, Zhang, C, Zhu, G, Irwin, M, Risch, H, Menato, G (2011) Telomerase expression and telomere length in breast cancer and their associations with adjuvant treatment and disease outcome. Breast Cancer Res 13: pp. R56 CrossRef
    75. Mattiske, S, Suetani, RJ, Neilsen, PM, Callen, DF (2012) The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 21: pp. 1236-1243 CrossRef
    76. Sochor, M, Basova, P, Pesta, M, Dusilkova, N, Bartos, J, Burda, P (2014) Oncogenic microRNAs: MiR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14: pp. 448 CrossRef
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions at posttranscriptional level. Growing evidence points to their significant role in the acquisition of drug resistance in cancers. Studies show that miRNAs are often aberrantly expressed in human cancer cells which are associated with tumorigenesis, metastasis, invasiveness, and drug resistance. Breast cancer is the leading cause of cancer-induced death in women. Over the last decades, increasing attention has been paid to the effects of miRNAs on the development of breast cancer drug resistance. Among them, miR-155 takes part in a sequence of bioprocesses that contribute to the development of such drug resistance, including repression of FOXO3a, enhancement of epithelial-to-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) signaling, reduction of RhoA, and affecting the length of telomeres. In this review, we discuss the role of miR-155 in the acquisition of breast cancer drug resistance. This will provide a new way in antiresistance treatment of drug-resistant breast cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700