用户名: 密码: 验证码:
Taming Glutamate Excitotoxicity: Strategic Pathway Modulation for Neuroprotection
详细信息    查看全文
  • 作者:Ming Jia (1)
    Steve A. Noutong Njapo (1)
    Vaibhav Rastogi (2)
    Vishnumurthy Shushrutha Hedna (2)

    1. University of Florida College of Medicine
    ; Gainesville ; FL ; USA
    2. Department of Neurology
    ; University of Florida College of Medicine ; HSC Box 100236 ; Gainesville ; FL ; 32610 ; USA
  • 刊名:CNS Drugs
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:29
  • 期:2
  • 页码:153-162
  • 全文大小:495 KB
  • 参考文献:1. Teichberg, V, Cohen-Kashi-Malina, K, Cooper, I, Zlotnik, A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158: pp. 301-308 CrossRef
    2. Zauner, A, Bullock, R, Kuta, AJ, Woodward, J, Young, HF (1996) Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl 67: pp. 40-44
    3. Shaw, P, Forrest, V, Ince, PG, Richardson, JP, Wastell, HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 4: pp. 209-216 CrossRef
    4. Spranger, M, Krempien, S, Schwab, S, Maiwald, M, Bruno, K, Hacke, W (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci 143: pp. 126-131 CrossRef
    5. Danbolt, NC (2001) Glutamate uptake. Prog Neurobiol 65: pp. 101-105
    6. Sattler, R, Tymianski, M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl). 78: pp. 3-13 CrossRef
    7. Muir, K (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6: pp. 53-60 CrossRef
    8. Benveniste, H, J酶rgensen, MB, Diemer, NH, Hansen, AJ (1988) Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand 78: pp. 529-536 CrossRef
    9. Manev, H, Favaron, M, Guidotti, A, Costa, E (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36: pp. 106-112
    10. Castillo, M, Babson, J (1998) Ca2-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience 86: pp. 1133-1144 CrossRef
    11. Li, S, Stys, P (2001) Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse NA(+)-dependent transport in spinal cord white matter. Neuroscience 107: pp. 675-683 CrossRef
    12. Ikonomidou, C, Turski, L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?. Lancet Neurol 1: pp. 383-386 CrossRef
    13. Stoica, BA, Faden, AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 7: pp. 3-12 CrossRef
    14. Yuan, J, Lipinski, M, Degterev, A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40: pp. 401-413 CrossRef
    15. Leibowitz, A, Boyko, M, Shapira, Y, Zlotnik, A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13: pp. 10041-10066 CrossRef
    16. Castillo, J, Davalos, A, Naveiro, J, Noya, M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27: pp. 1060-1065 CrossRef
    17. Zlotnik, A, Sinelnikov, I, Gruenbaum, BF, Gruenbaum, SE, Dubilet, M, Dubilet, E (2012) Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 116: pp. 73-83 CrossRef
    18. Andreadou, E, Kapaki, E, Kokotis, P, Paraskevas, GP, Katsaros, N, Libitaki, G (2008) Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg 110: pp. 222-226 CrossRef
    19. Stojanovic, IR, Kostic, M, Ljubisavljevic, S (2014) The role of glutamate and its receptors in multiple sclerosis. J Neural Transm. 121: pp. 945-955 CrossRef
    20. Hawkins, RA, Mokashi, A, Dejoseph, MR, Vi帽a, JR, Fernstrom, JD (2010) Glutamate permeability at the blood-brain barrier in insulinopenic and insulin-resistant rats. Metabolism. 59: pp. 258-266 CrossRef
    21. O鈥檏ane, RL (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J Biol Chem 274: pp. 31891-31895 CrossRef
    22. Rossi, DJ, Oshima, T, Attwell, D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 407: pp. 316-321
    23. Caldeira, MV, Salazar, IL, Curcio, M, Canzoniero, LM, Duarte, CB (2014) Role of the ubiquitin鈥損roteasome system in brain ischemia: friend or foe?. Prog Neurobiol 112: pp. 50-69 CrossRef
    24. Parsons, MP, Raymond, LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82: pp. 279-293 CrossRef
    25. Lau, A, Tymianski, M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460: pp. 525-542 CrossRef
    26. Boyko, M, Melamed, I, Gruenbaum, BF, Gruenbaum, SE, Ohayon, S, Leibowitz, A (2012) The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics. 9: pp. 649-657 CrossRef
    27. Campos, F, Sobrino, T, Perez-Mato, M, Rodriguez-Osorio, X, Leira, R, Blanco, M (2013) Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia 33: pp. 1148-1154 CrossRef
    28. Zlotnik, A, Gurevich, B, Cherniavsky, E, Tkachov, S, Ruban, AM, Leon, A (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33: pp. 1044-1050 CrossRef
    29. Tweel, E, Bel, F, Kavelaars, A, Peeters-Scholte, C, Haumann, J, Nijboer, CHA (2005) Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab 25: pp. 67-74 CrossRef
    30. Aarts, M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298: pp. 846-850 CrossRef
    31. Jones, N (2011) Stroke: disruption of the NNOS鈥揚SD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol. 7: pp. 61 CrossRef
    32. Zhou, L, Li, F, Xu, H-B, Luo, C-X, Wu, H-Y, Zhu, M-M (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of NNOS with PSD-95. Nat Med 16: pp. 1439-1443 CrossRef
    33. Boyko, M, Gruenbaum, SE, Gruenbaum, BR, Shipira, Y, Zlotnik, A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm. 121: pp. 971-979 CrossRef
    34. Lee, J-M, Zipfel, GJ, Choi, DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399: pp. A7-A14 CrossRef
    35. Dykens, JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and NA+: implications for neurodegeneration. J Neurochem 63: pp. 584-591 CrossRef
    36. Ogden, KK, Traynelis, SF (2011) New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 32: pp. 726-733 CrossRef
    37. Kalia, LV, Kalia, SK, Salter, MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7: pp. 742-755 CrossRef
    38. Lipton, SA (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx. 1: pp. 101-110 CrossRef
    39. Decker, H, J眉rgensen, S, Adrover, MF, Brito-Moreira, J, Bomfim, TR, Klein, WL (2010) N-methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer鈥檚 toxic amyloid-尾 peptide oligomers. J Neurochem 115: pp. 1520-1529 CrossRef
    40. Felice, FG, Velasco, PT, Lambert, MP, Viola, K, Fernandez, SJ, Ferreira, ST (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282: pp. 11590-11601 CrossRef
    41. Gottlieb, M, Wang, Y, Teichberg, VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87: pp. 119-126 CrossRef
    42. Zlotnik, A, Gurevich, B, Tkachov, S, Maoz, I, Shapira, Y, Teichberg, VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203: pp. 213-220 CrossRef
    43. Zlotnik, A, Gruenbaum, SE, Artru, AA, Rozet, I, Dubilet, M, Tkachov, S (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity. J Neurosurg Anesthesiol 21: pp. 235-241 CrossRef
    44. Baker, AJ, Moulton, RJ, Macmillan, VH, Shedden, PM (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg 79: pp. 369-372 CrossRef
    45. Palmer, AM, Marion, DW, Botscheller, ML, Swedlow, PE, Styren, SD, Dekosky, ST (1993) Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 61: pp. 2015-2024 CrossRef
    46. Castillo, J, D谩valos, A, Noya, M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349: pp. 79-83 CrossRef
    47. Campos, F, Sobrino, T, Ramos-Cabrer, P, Argibay, B, Agulla, J, P茅rez-Mato, M (2011) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31: pp. 1378-1386 CrossRef
    48. Nagy, D, Marosi, M, Kis, Z, Farkas, T, Rakos, G, Vecsei, L (2009) Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol 26: pp. 827-835 CrossRef
    49. P茅rez-Mato, M, Ramos-Cabrer, P, Sobrino, T, Blanco, M, Ruban, A, Mirelman, D (2014) Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia. Cell Death Dis 5: pp. e992 CrossRef
    50. Boyko, M, Zlotnik, A, Gruenbaum, BF, Gruenbaum, SE, Ohayon, S, Kuts, R (2011) Pyruvate鈥檚 blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci 34: pp. 1432-1441 CrossRef
    51. Knapp L, Gell茅rt L, Kocsis K, Kis Z, Farkas T, V茅csei L, et al. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat. Cell Mol Neurobiol (Epub 8 May 2014).
    52. Carvalho, A, Rodrigues, S, Torres, LB, Persike, DS, Fernandes, MJS, Amado, D (2011) Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int 58: pp. 385-390 CrossRef
    53. Tattersall, J (2009) Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed). 14: pp. 3688-3711 CrossRef
    54. Ruban, A, Mohar, B, Jona, G, Teichberg, VI (2014) Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab 34: pp. 221-227 CrossRef
    55. Rogachev, B, Tsesis, S, Gruenbaum, BF, Gruenbaum, SE, Boyko, M, Klein, M (2013) The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol 25: pp. 262-266 CrossRef
    56. Godino MeC, Romera VG, S谩nchez-Tomero JA, Pacheco J, Canals S, Lerma J, et al. Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest. 2013;123(10):4359鈥?3.
    57. Srinivasan, K, Sharma, SS (2012) 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci 90: pp. 154-160 CrossRef
    58. Yin, X-H, Yan, J-Z, Hou, X-Y, Wu, S-L, Zhang, G-Y (2013) Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience 248: pp. 290-298 CrossRef
    59. Lu, A, Wagner, KR, Broderick, JP, Clark, JF (2014) Administration of S-methyl-l-thiocitrulline protects against brain injuries after intracerebral hemorrhage. Neuroscience 270: pp. 40-47 CrossRef
    60. Cook, DJ, Teves, L, Tymianski, M (2012) Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483: pp. 213-217 CrossRef
    61. Lai, TW, Zhang, S, Wang, YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115: pp. 157-188 CrossRef
    62. Minnerup, J, Sutherland, BA, Buchan, AM, Kleinschnitz, C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13: pp. 11753-11772 CrossRef
    63. Lapchak, PA (2010) A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy?. Expert Opin Pharmacother 11: pp. 1753-1763 CrossRef
    64. Fan, J, Long, H, Li, Y, Liu, Y, Zhou, W, Li, Q (2013) Edaravone protects against glutamate-induced PERK/EIF2伪/ATF4 integrated stress response and activation of caspase-12. Brain Res 1519: pp. 1-8 CrossRef
    65. Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;(12):CD007230.
    66. Yang J, Liu M, Zhou J, Zhang S, Lin S, Zhao H. Edaravone for acute intracerebral haemorrhage. Cochrane Database Syst Rev. 2011;(2):CD007755.
    67. Otomo, E (2003) Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 15: pp. 222-229 CrossRef
    68. Inatomi, Y, Takita, T, Yonehara, T, Fujioka, S, Hashimoto, Y, Hirano, T (2006) Efficacy of edaravone in cardioembolic stroke. Int Med. 45: pp. 253-257 CrossRef
    69. Mishina, M, Komaba, Y, Kobayashi, S, Tanaka, N, Kominami, S, Fukuchi, T (2005) Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir 45: pp. 344-348 CrossRef
    70. Ohta, Y, Takamatsu, K, Fukushima, T, Ikegami, S, Takeda, I, Ota, T (2009) Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Int Med. 48: pp. 593-596 CrossRef
    71. Abe, M, Kaizu, K, Matsumoto, K (2007) A case report of acute renal failure and fulminant hepatitis associated with edaravone administration in a cerebral infarction patient. Ther Apher Dial. 11: pp. 235-240 CrossRef
    72. Hishida, A (2007) Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exper Nephrol. 11: pp. 292-296 CrossRef
    73. Kano, T, Harada, T, Hirayama, T, Katayama, Y (2007) Combination therapy using TPA and edaravone improves the neurotoxic effect of TPA. Interv Neuroradiol. 13: pp. 106-108
    74. Parnham, MJ, Sies, H (2013) The early research and development of ebselen. Biochem Pharmacol 86: pp. 1248-1253 CrossRef
    75. Seo, JY, Lee, CH, Cho, JH, Choi, JH, Yoo, K-Y, Kim, DW (2009) Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci 285: pp. 88-94 CrossRef
    76. Kalayci, M, Coskun, O, Cagavi, F, Kanter, M, Armutcu, F, Gul, S (2005) Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res 30: pp. 403-410 CrossRef
    77. Koizumi, H, Fujisawa, H, Suehiro, E, Shirao, S, Suzuki, M (2011) Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir 51: pp. 337-343 CrossRef
    78. Mazzanti, CM, Spanevello, R, Ahmed, M, Pereira, LB, Gon莽alves, JF, Corr锚a, M (2009) Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci 27: pp. 73-80 CrossRef
    79. Porci煤ncula, LO, Rocha, JBT, Boeck, CR, Vendite, D, Souza, DO (2001) Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett 299: pp. 217-220 CrossRef
    80. Yamaguchi, T, Sano, K, Takakura, K, Saito, I, Shinohara, Y, Asano, T (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Stroke 29: pp. 12-17 CrossRef
    81. Ogawa, A, Yoshimoto, T, Kikuchi, H, Sano, K, Saito, I, Yamaguchi, T (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 9: pp. 112-118 CrossRef
    82. Mason, RP, Casu, M, Butler, N, Breda, C, Campesan, S, Clapp, J (2013) Glutathione peroxidase activity is neuroprotective in models of Huntington鈥檚 disease. Nat Genet 45: pp. 1249-1254 CrossRef
    83. Wei, L, Zhang, Y, Yang, C, Wang, Q, Zhuang, Z, Sun, Z (2014) Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and P38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol 41: pp. 134-138 CrossRef
    84. Wu, J, Li, Q, Wang, X, Yu, S, Li, L, Wu, X (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8: pp. e59843 CrossRef
    85. Kuo, C-P, Lu, C-H, Wen, L-L, Cherng, C-H, Wong, C-S, Borel, CO (2011) Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology 115: pp. 1229-1238
    86. Tu, XK, Yang, WZ, Chen, JP, Chen, Y, Ouyang, LQ, Xu, YC (2014) Curcumin inhibits TLR2/4-NF-魏B signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation. 37: pp. 1544-1551 CrossRef
    87. Koh, P-O (2013) Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS One 8: pp. e54217 CrossRef
    88. Ballaz, S, Morales, I, Rodr铆guez, M, Obeso, JA (2013) Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 91: pp. 1609-1617 CrossRef
    89. Katnik, C, Cuevas, J (2014) Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by 伪-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci 15: pp. 3596-3611 CrossRef
  • 刊物主题:Neurology; Psychopharmacology; Pharmacotherapy; Neurosciences; Psychiatry;
  • 出版者:Springer International Publishing
  • ISSN:1179-1934
文摘
Much work has been carried out in recent years showing that elevated glutamate levels in the extracellular environment of the central nervous system play a pivotal role in neurodegeneration in acute CNS injuries. With the elucidation of the mechanism governing glutamate excitotoxicity, researchers are devising therapeutic strategies to target different parts of the pathway which begins with glutamate accumulation and ultimately results in neuronal cell death. In this article, we review some of the major classes of agents that are currently being investigated and highlight some of the key studies for each. Glutamate scavenging is a relatively new approach that directly decreases glutamate levels in the brain, thus preventing excitotoxicity. Nitric oxide inhibitors and free radical scavengers are more well-studied strategies that continue to yield promising results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700