用户名: 密码: 验证码:
OTUB1 promotes metastasis and serves as a marker of poor prognosis in colorectal cancer
详细信息    查看全文
  • 作者:Yi Zhou (1)
    Jiangxue Wu (1)
    Xiang Fu (1)
    Wuying Du (1)
    Ling Zhou (1)
    Xiangqi Meng (1)
    Hongyan Yu (1)
    Jiaxin Lin (1)
    Wen Ye (1)
    Jiani Liu (1)
    Hui Peng (3)
    Ran-yi Liu (1)
    Changchuan Pan (2)
    Wenlin Huang (1) (4) (5)

    1. State Key Laboratory of Oncology in Southern China
    ; Sun Yat-sen University Cancer Center ; Collaborative Innovation Center for Cancer Medicine ; No. 651 Dongfeng East Road ; Guangzhou ; 510060 ; China
    3. Department of Colorectal and Anal Surgery
    ; the Sixth Affiliated Hospital of Sun Yat-sen University ; Guangzhou ; PR China
    2. Medical Oncology
    ; Sichuan Cancer Hospital and Institute ; Second People鈥檚 Hospital of Sichuan Province ; Chengdu ; 614000 ; PR China
    4. CAS Key Laboratory of Pathogenic Microbiology and Immunology
    ; Institute of Microbiology ; Chinese Academy of Sciences ; Beijing ; PR China
    5. Guangdong Provincial Key Laboratory of Tumor-targeted Drug and Guangzhou Enterprise Key Laboratory of Gene Medicine
    ; Guangzhou Doublle Bioproducts Inc. ; Guangzhou ; Guangdong ; China
  • 关键词:OTUB1 ; Colorectal cancer ; Metastasis ; EMT ; Prognostic factor
  • 刊名:Molecular Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,895 KB
  • 参考文献:1. Siegel, R, Naishadham, D, Jemal, A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: pp. 10-29 CrossRef
    2. Spolverato, G, Ejaz, A, Azad, N, Pawlik, TM (2013) Surgery for colorectal liver metastases: The evolution of determining prognosis. World J Gastrointest Oncol 5: pp. 207-221 CrossRef
    3. Andres, A, Toso, C, Adam, R, Barroso, E, Hubert, C, Capussotti, L, Gerstel, E, Roth, A, Majno, PE, Mentha, G (2012) A survival analysis of the liver-first reversed management of advanced simultaneous colorectal liver metastases: a LiverMetSurvey-based study. Ann Surg 256: pp. 772-779 CrossRef
    4. Mayo, SC, Heckman, JE, Shore, AD, Nathan, H, Parikh, AA, Bridges, JF, Anders, RA, Anaya, DA, Becker, NS, Pawlik, TM (2011) Shifting trends in liver-directed management of patients with colorectal liver metastasis: a population-based analysis. Surgery 150: pp. 204-216 CrossRef
    5. Li, X, Stevens, PD, Yang, H, Gulhati, P, Wang, W, Evers, BM, Gao, T (2013) The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene 32: pp. 471-478 CrossRef
    6. Liu, YL, Yang, YM, Xu, H, Dong, XS (2011) Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol 103: pp. 283-289 CrossRef
    7. Zhong, J, Zhao, M, Ma, Y, Luo, Q, Liu, J, Wang, J, Yuan, X, Sang, J, Huang, C (2012) UCHL1 acts as a colorectal cancer oncogene via activation of the beta-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med 30: pp. 430-436
    8. Harris, DR, Mims, A, Bunz, F (2012) Genetic disruption of USP9X sensitizes colorectal cancer cells to 5-fluorouracil. Cancer Biol Ther 13: pp. 1319-1324 CrossRef
    9. Balakirev, MY, Tcherniuk, SO, Jaquinod, M, Chroboczek, J (2003) Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 4: pp. 517-522 CrossRef
    10. Wang, T, Yin, L, Cooper, EM, Lai, MY, Dickey, S, Pickart, CM, Fushman, D, Wilkinson, KD, Cohen, RE, Wolberger, C (2009) Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J Mol Biol 386: pp. 1011-1023 CrossRef
    11. Edelmann, MJ, Iphofer, A, Akutsu, M, Altun, M, di Gleria, K, Kramer, HB, Fiebiger, E, Dhe-Paganon, S, Kessler, BM (2009) Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 418: pp. 379-390 CrossRef
    12. Juang, YC, Landry, MC, Sanches, M, Vittal, V, Leung, CC, Ceccarelli, DF, Mateo, AR, Pruneda, JN, Mao, DY, Szilard, RK, Orlicky, S, Munro, M, Brzovic, PS, Klevit, RE, Sicheri, F, Durocher, D (2012) OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 45: pp. 384-397 CrossRef
    13. Blackford, AN, Stewart, GS (2011) When cleavage is not attractive: non-catalytic inhibition of ubiquitin chains at DNA double-strand breaks by OTUB1. DNA Repair (Amst) 10: pp. 245-249 CrossRef
    14. Nakada, S, Tai, I, Panier, S, Al-Hakim, A, Iemura, S, Juang, YC, O'Donnell, L, Kumakubo, A, Munro, M, Sicheri, F, Gingras, AC, Natsume, T, Suda, T, Durocher, D (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466: pp. 941-946 CrossRef
    15. Sato, Y, Yamagata, A, Goto-Ito, S, Kubota, K, Miyamoto, R, Nakada, S, Fukai, S (2012) Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. J Biol Chem 287: pp. 25860-25868 CrossRef
    16. Soares, L, Seroogy, C, Skrenta, H, Anandasabapathy, N, Lovelace, P, Chung, CD, Engleman, E, Fathman, CG (2004) Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat Immunol 5: pp. 45-54 CrossRef
    17. Herhaus, L, Al-Salihi, M, Macartney, T, Weidlich, S, Sapkota, GP (2013) OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun 4: pp. 2519 CrossRef
    18. Goncharov, T, Niessen, K, de Almagro, MC, Izrael-Tomasevic, A, Fedorova, AV, Varfolomeev, E, Arnott, D, Deshayes, K, Kirkpatrick, DS, Vucic, D (2013) OTUB1 modulates c-IAP1 stability to regulate signalling pathways. Embo J 32: pp. 1103-1114 CrossRef
    19. Sun, XX, Challagundla, KB, Dai, MS (2012) Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. Embo J 31: pp. 576-592 CrossRef
    20. Bolocan, A, Ion, D, Ciocan, DN, Paduraru, DN (2012) Prognostic and predictive factors in colorectal cancer. Chirurgia (Bucur) 107: pp. 555-563
    21. Berg, M, Agesen, TH, Thiis-Evensen, E, Merok, MA, Teixeira, MR, Vatn, MH, Nesbakken, A, Skotheim, RI, Lothe, RA (2010) Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol Cancer 9: pp. 100 CrossRef
    22. Puvvada, SD, Funkhouser, WK, Greene, K, Deal, A, Chu, H, Baldwin, AS, Tepper, JE, O'Neil, BH (2010) NF-kB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology 78: pp. 181-188 CrossRef
    23. Fakih, MG, Padmanabhan, A (2006) CEA monitoring in colorectal cancer. What you should know. Oncology (Williston Park) 20: pp. 579-587
    24. Yilmaz, M, Christofori, G, Lehembre, F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13: pp. 535-541 CrossRef
    25. Reinacher-Schick, A, Baldus, SE, Romdhana, B, Landsberg, S, Zapatka, M, Monig, SP, Holscher, AH, Dienes, HP, Schmiegel, W, Schwarte-Waldhoff, I (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202: pp. 412-420 CrossRef
    26. Thiery, JP, Sleeman, JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: pp. 131-142 CrossRef
    27. Berx, G, Cleton-Jansen, AM, Strumane, K, de Leeuw, WJ, Nollet, F, van Roy, F, Cornelisse, C (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 13: pp. 1919-1925
    28. Baranwal, S, Alahari, SK (2009) Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 384: pp. 6-11 CrossRef
    29. Carneiro, P, Fernandes, MS, Figueiredo, J, Caldeira, J, Carvalho, J, Pinheiro, H, Leite, M, Melo, S, Oliveira, P, Simoes-Correia, J, Oliveira, MJ, Carneiro, F, Figueiredo, C, Paredes, J, Oliveira, C, Seruca, R (2012) E-cadherin dysfunction in gastric cancer鈥揷ellular consequences, clinical applications and open questions. FEBS Lett 586: pp. 2981-2989 CrossRef
    30. Georgolios, A, Eleftheriadou, A, Batistatou, A, Charalabopoulos, K (2012) Role of the recently identified dysadherin in E-cadherin adhesion molecule downregulation in head and neck cancer. Med Oncol 29: pp. 1463-1467 CrossRef
    31. Salon, C, Lantuejoul, S, Eymin, B, Gazzeri, S, Brambilla, C, Brambilla, E (2005) The E-cadherin-beta-catenin complex and its implication in lung cancer progression and prognosis. Future Oncol 1: pp. 649-660 CrossRef
    32. Wijnhoven, BP, de Both, NJ, van Dekken, H, Tilanus, HW, Dinjens, WN (1999) E-cadherin gene mutations are rare in adenocarcinomas of the oesophagus. Br J Cancer 80: pp. 1652-1657 CrossRef
    33. Tsanou, E, Peschos, D, Batistatou, A, Charalabopoulos, A, Charalabopoulos, K (2008) The E-cadherin adhesion molecule and colorectal cancer. A global literature approach. Anticancer Res 28: pp. 3815-3826
    34. Buda, A, Pignatelli, M (2011) E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis. Cell Commun Adhes 18: pp. 133-143 CrossRef
    35. Schuhmacher, C, Becker, I, Oswald, S, Atkinson, MJ, Nekarda, H, Becker, KF, Mueller, J, Siewert, JR, Hofler, H (1999) Loss of immunohistochemical E-cadherin expression in colon cancer is not due to structural gene alterations. Virchows Arch 434: pp. 489-495 CrossRef
    36. Kwak, JM, Min, BW, Lee, JH, Choi, JS, Lee, SI, Park, SS, Kim, J, Um, JW, Kim, SH, Moon, HY (2007) The prognostic significance of E-cadherin and liver intestine-cadherin expression in colorectal cancer. Dis Colon Rectum 50: pp. 1873-1880 CrossRef
    37. Spaderna, S, Schmalhofer, O, Hlubek, F, Berx, G, Eger, A, Merkel, S, Jung, A, Kirchner, T, Brabletz, T (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131: pp. 830-840 CrossRef
    38. Eger, A, Aigner, K, Sonderegger, S, Dampier, B, Oehler, S, Schreiber, M, Berx, G, Cano, A, Beug, H, Foisner, R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24: pp. 2375-2385 CrossRef
    39. Satelli, A, Li, S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68: pp. 3033-3046 CrossRef
    40. Ngan, CY, Yamamoto, H, Seshimo, I, Tsujino, T, Man-i, M, Ikeda, JI, Konishi, K, Takemasa, I, Ikeda, M, Sekimoto, M, Matsuura, N, Monden, M (2007) Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Br J Cancer 96: pp. 986-992 CrossRef
    41. Shirahata, A, Sakata, M, Sakuraba, K, Goto, T, Mizukami, H, Saito, M, Ishibashi, K, Kigawa, G, Nemoto, H, Sanada, Y, Hibi, K (2009) Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res 29: pp. 279-281
    42. Yamasaki, T, Seki, N, Yamada, Y, Yoshino, H, Hidaka, H, Chiyomaru, T, Nohata, N, Kinoshita, T, Nakagawa, M, Enokida, H (2012) Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol 41: pp. 805-817
    43. Schmalhofer, O, Brabletz, S, Brabletz, T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28: pp. 151-166 CrossRef
    44. Korinek, V, Barker, N, Morin, PJ, van Wichen, D, de Weger, R, Kinzler, KW, Vogelstein, B, Clevers, H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: pp. 1784-1787 CrossRef
    45. Brabletz, T, Herrmann, K, Jung, A, Faller, G, Kirchner, T (2000) Expression of nuclear beta-catenin and c-myc is correlated with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol 156: pp. 865-870 CrossRef
    46. Wong, SC, Lo, ES, Lee, KC, Chan, JK, Hsiao, WL (2004) Prognostic and diagnostic significance of beta-catenin nuclear immunostaining in colorectal cancer. Clin Cancer Res 10: pp. 1401-1408 CrossRef
    47. Doble, BW, Woodgett, JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116: pp. 1175-1186 CrossRef
    48. Munemitsu, S, Albert, I, Souza, B, Rubinfeld, B, Polakis, P (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 92: pp. 3046-3050 CrossRef
    49. Simcha, I, Shtutman, M, Salomon, D, Zhurinsky, J, Sadot, E, Geiger, B, Ben-Ze'ev, A (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141: pp. 1433-1448 CrossRef
    50. Abubaker, J, Bavi, P, Al-Haqawi, W, Jehan, Z, Munkarah, A, Uddin, S, Al-Kuraya, KS (2009) PIK3CA alterations in Middle Eastern ovarian cancers. Mol Cancer 8: pp. 51 CrossRef
    51. Cai, MY, Luo, RZ, Chen, JW, Pei, XQ, Lu, JB, Hou, JH, Yun, JP (2012) Overexpression of ZEB2 in peritumoral liver tissue correlates with favorable survival after curative resection of hepatocellular carcinoma. PLoS One 7: pp. e32838 CrossRef
    52. Wang, H, Wu, J, Meng, X, Ying, X, Zuo, Y, Liu, R, Pan, Z, Kang, T, Huang, W (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32: pp. 1033-1042 CrossRef
    53. Meng, X, Wu, J, Pan, C, Wang, H, Ying, X, Zhou, Y, Yu, H, Zuo, Y, Pan, Z, Liu, RY, Huang, W (2013) Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology 145: pp. 426-436 CrossRef
    54. Huang, S, Jean, D, Luca, M, Tainsky, MA, Bar-Eli, M (1998) Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. Embo J 17: pp. 4358-4369 CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background OTUB1 (OTU deubiquitinase, ubiquitin aldehyde binding 1) is a deubiquitinating enzyme (DUB) that belongs to the OTU (ovarian tumor) superfamily. The aim of this study was to clarify the role of OTUB1 in colorectal cancer (CRC) and to identify the mechanism underlying its function. Methods Two hundred and sixty CRC samples were subjected to association analysis of OTUB1 expression and clinicopathological variables using immunohistochemical (IHC) staining. Overexpression of OTUB1 was achieved in SW480 and DLD-1 cells, and downregulation of OTUB1 was employed in SW620 cells. Then, migration and invasion assays were performed, and markers of the epithelial-mesenchymal transition (EMT) were analyzed. In addition, hepatic metastasis models in mice were used to validate the function of OTUB1 in vivo. Results OTUB1 was overexpressed in CRC tissues, and the expression level of OTUB1 was associated with metastasis. A high expression level of OTUB1 was also associated with poor survival, and OTUB1 served as an independent prognostic factor in multivariate analysis. OTUB1 also promoted the metastasis of CRC cell lines in vitro and in vivo by regulating EMT. Conclusions OTUB1 promotes CRC metastasis by facilitating EMT and acts as a potential distant metastasis marker and prognostic factor in CRC. Targeting OTUB1 may be helpful for the treatment of CRC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700