用户名: 密码: 验证码:
Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass
详细信息    查看全文
  • 作者:Shaoxun Yuan (1)
    Bin Xu (2)
    Jing Zhang (2)
    Zheni Xie (2)
    Qiang Cheng (3)
    Zhimin Yang (2)
    Qingsheng Cai (1)
    Bingru Huang (4)

    1. College of Life Science
    ; Nanjing Agricultural University ; Nanjing ; 210095 ; PR China
    2. College of Agro-grassland Science
    ; Nanjing Agricultural University ; Nanjing ; 210095 ; PR China
    3. Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement
    ; Nanjing Forestry University ; Nanjing ; 210037 ; PR China
    4. Department of Plant Biology and Pathology
    ; Rutgers ; the State University of New Jersey ; New Brunswick ; NJ ; 08901 ; USA
  • 关键词:Panicum virgatum ; C3H ; Evolution ; Polyploidy ; Stress ; Development
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,690 KB
  • 参考文献:1. Laity, JH, Lee, BM, Wright, PE (2001) Zinc finger proteins. new insights into structural and functional diversity. Curr Opin Struc Biol 11: pp. 39-46 CrossRef
    2. Blackshear, PJ (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biocheml Societ Transact 30: pp. 945-52
    3. Zhang, C, Zhang, H, Zhao, Y, Jiang, H, Zhu, S, Cheng, B, Xiang, Y (2013) Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula. Plant Cell Rep 32: pp. 1543-55 CrossRef
    4. Chai, G, Hu, R, Zhang, D, Qi, G, Zuo, R, Cao, Y, Chen, P, Kong, Y, Zhou, G (2012) Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 13: pp. 1471-2164
    5. Liu, S, Khan, M, Li, Y, Zhang, J, Hu, C (2014) Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization. Mol Genet Genomics 289: pp. 855-72 CrossRef
    6. Wang, D, Guo, Y, Wu, C, Yang, G, Li, Y, Zheng, C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9: pp. 1471-2164
    7. Peng, X, Zhao, Y, Cao, J, Zhang, W, Jiang, H, Li, X, Ma, Q, Zhu, S, Cheng, B (2012) CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PloS one 7: pp. e40120 CrossRef
    8. Li, Z, Thomas, TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10: pp. 383-98
    9. Guo, YH, Yu, YP, Wang, D, Wu, CA, Yang, GD, Huang, JG, Zheng, CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183: pp. 62-75 CrossRef
    10. Lin, PC, Pomeranz, MC, Jikumaru, Y, Kang, SG, Hah, C, Fujioka, S, Kamiya, Y, Jang, JC (2011) The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth, stress and gene expression responses. Plant J 65: pp. 253-68 CrossRef
    11. Kong, Z, Li, M, Yang, W, Xu, W, Xue, Y (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141: pp. 1376-88 CrossRef
    12. Li, J, Jia, D, Chen, X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13: pp. 2269-81 CrossRef
    13. Sun, J, Jiang, H, Xu, Y, Li, H, Wu, X, Xie, Q, Li, C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48: pp. 1148-58 CrossRef
    14. Jan, AMK, Todaka, D, Kidokoro, S, Abo, M, Yoshimura, E, Shinozaki, K, Nakashima, K, Yamaguchi-Shinozaki, K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161: pp. 1202-16 CrossRef
    15. Lee, SJ, Jung, HJ, Kang, H, Kim, SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant Cell Physiol 53: pp. 673-86 CrossRef
    16. Bogamuwa, S, JANG, JC (2013) The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. Plant Cell Environ 36: pp. 1507-19 CrossRef
    17. Anderson, B, Ward, J, Vogel, K, Ward, M, Haskins, FA, Gorz, HJ (1988) Foraging quality and performance of yearlings grazing switchgrass strains selected for differing digestibility. J Anim Sci. 66: pp. 2239-44
    18. McLaughlin, SB, Adams, KL (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg 28: pp. 515-35 CrossRef
    19. Lawrence, CJ, Walbot, V (2007) Translational genomics for bioenergy production from fuelstock grasses: maize as the model species. Plant Cell 19: pp. 2091-4 CrossRef
    20. Zhang, JZ, Creelman, RA, Zhu, JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135: pp. 615-21 CrossRef
    21. Panicum virgatum v1.1, DOE-JGI [http://www.phytozome.net/search.php?org=Org_Pvirgatum_v1.1]
    22. Saathoff, AJ, Donze, T, Palmer, NA, Bradshaw, J, Heng-Moss, T, Twigg, P, Tobias, CM, Lagrimini, M, Sarath, G (2013) Towards uncovering the roles of switchgrass peroxidases in plant processes. Frontiers in Plant Science. 4: pp. 202 CrossRef
    23. Zhang, JY, Lee, YC, Torres-Jerez, I, Wang, M, Yin, Y, Chou, WC, He, J, Shen, H, Srivastava, AC, Pennacchio, C (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74: pp. 160-73 CrossRef
    24. Switchgrass Functional Genomics Server [http://switchgrassgenomics.noble.org/]
    25. Sharma, MK, Sharma, R, Cao, P, Jenkins, J, Bartley, LE, Qualls, M, Grimwood, J, Schmutz, J, Rokhsar, D, Ronald, PC (2012) A genome-wide survey of switchgrass genome structure and organization. PloS one 7: pp. e33892 CrossRef
    26. Saitou, N, Nei, M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: pp. 406-25
    27. Felsenstein, J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: pp. 783-91 CrossRef
    28. Nei, M, Kumar, S (2000) Molecular evolution and phylogenetics: New York. Oxford University Press, NY, USA
    29. Tamura, K, Stecher, G, Peterson, D, Filipski, A, Kumar, S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: pp. 2725-9 CrossRef
    30. Lai, WS, Blackshear, PJ (2001) Interactions of CCCH zinc finger proteins with mRNA tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J Biol Chem 276: pp. 23144-54 CrossRef
    31. Stefl, R, Skrisovska, L, Allain, FH (2005) RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6: pp. 33-8 CrossRef
    32. Wang, L, Xu, Y, Zhang, C, Ma, Q, Joo, SH, Kim, SK, Xu, Z, Chong, K (2008) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS one 3: pp. e3521 CrossRef
    33. Deng, H, Liu, H, Li, X, Xiao, J, Wang, S (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158: pp. 876-89 CrossRef
    34. Okada, M, Lanzatella, C, Saha, MC, Bouton, J, Wu, R, Tobias, CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 185: pp. 745-60 CrossRef
    35. Huang, S, Su, X, Haselkorn, R, Gornicki, P (2003) Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci 164: pp. 43-9 CrossRef
    36. Blanc, G, Wolfe, KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16: pp. 1667-78 CrossRef
    37. Tobias, CM (2009) A genome may reduce your carbon footprint. Plant Genome 2: pp. 5-8 CrossRef
    38. Schnable, PS, Ware, D, Fulton, RS, Stein, JC, Wei, F, Pasternak, S, Liang, C, Zhang, J, Fulton, L, Graves, TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: pp. 1112-5 CrossRef
    39. Yu, J, Hu, S, Wang, J, Wong, GKS, Li, S, Liu, B, Deng, Y, Dai, L, Zhou, Y, Zhang, X (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: pp. 79-92 CrossRef
    40. Goff, SA, Ricke, D, Lan, TH, Presting, G, Wang, R, Dunn, M, Glazebrook, J, Sessions, A, Oeller, P, Varma, H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: pp. 92-100 CrossRef
    41. Paterson, A, Bowers, J, Chapman, B (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. P Natl Acad Sci USA 101: pp. 9903-8 CrossRef
    42. Kellogg, EA (2001) Evolutionary history of the grasses. Plant Physiol 125: pp. 1198-205 CrossRef
    43. Lai, J, Ma, J, Swigo艌ov谩, Z, Ramakrishna, W, Linton, E, Llaca, V, Tanyolac, B, Park, YJ, Jeong, OY, Bennetzen, JL (2004) Gene loss and movement in the maize genome. Genome Res 14: pp. 1924-31 CrossRef
    44. Conesa, A, G枚tz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-6 CrossRef
    45. Blanvillain, R, Wei, S, Wei, P, Kim, JH, Ow, DW (2011) Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. Embo J 30: pp. 3812-22 CrossRef
    46. Chen, Y, Sun, A, Wang, M, Zhu, Z, Ouwerkerk, PF (2014) Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice. Plant Mol Biol 84: pp. 621-34 CrossRef
    47. Zhang, C, Xu, Y, Guo, S, Zhu, J, Huan, Q, Liu, H, Wang, L, Luo, G, Wang, X, Chong, K (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8: pp. e1002686 CrossRef
    48. Sakamoto, T, Morinaka, Y, Ohnishi, T, Sunohara, H, Fujioka, S, Ueguchi-Tanaka, M, Mizutani, M, Sakata, K, Takatsuto, S, Yoshida, S (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature biotech 24: pp. 105-9 CrossRef
    49. Finn, RD, Clements, J, Eddy, SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39: pp. W29-37 CrossRef
    50. Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY, Eddy, SR, Heger, A, Hetherington, K, Holm, L, Mistry, J (2013) Pfam: the protein families database. Nucleic Acids Res. 42: pp. D222-30 CrossRef
    51. Imple Modular Architecture Research Tool [http://smart.embl-heidelberg.de/]
    52. Crooks, GE, Hon, G, Chandonia, JM, Brenner, SE (2004) WebLogo: a sequence logo generator. Genome Res 14: pp. 1188-90 CrossRef
    53. ExPASy Bioinformatics Resource Portal [http://www.expasy.org/tools/]
    54. Guo, AYZQ, Chen, X, Luo, JC (2007) GSDS: a gene structure display server. Yi Chuan 29: pp. 1023-6 CrossRef
    55. Swigo艌ov谩, Z, Lai, J, Ma, J, Ramakrishna, W, Llaca, V, Bennetzen, JL, Messing, J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14: pp. 1916-23 CrossRef
    56. Librado, P, Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: pp. 1451-2 CrossRef
    57. Gaut, BS, Morton, BR, McCaig, BC, Clegg, MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. P Natl Acad Sci USA 93: pp. 10274-9 CrossRef
    58. Higo, K, Ugawa, Y, Iwamoto, M, Korenaga, T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: pp. 297-300 CrossRef
    59. Xu, B, Huang, L, Shen, Z, Welbaum, GE, Zhang, X, Zhao, B (2011) Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Scien Hortic-Amsterdam 129: pp. 854-61 CrossRef
    60. Gimeno, J, Eattock, N, Deynze, A, Blumwald, E (2014) Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PloS one 9: pp. e91474 CrossRef
    61. Huang, L, Yan, H, Jiang, X, Zhang, X, Zhang, Y, Huang, X, Zhang, Y, Miao, J, Xu, B, Frazier, T (2014) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in switchgrass under various abiotic stress conditions. BioEnerg Res 7: pp. 1201-11 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background In recent years, dozens of Arabidopsis and rice CCCH-type zinc finger genes have been functionally studied, many of which confer important traits, such as abiotic and biotic stress tolerance, delayed leaf senescence and improved plant architecture. Switchgrass (Panicum virgatum) is an important bioenergy crop. Identification of agronomically important genes and/or loci is an important step for switchgrass molecular breeding. Annotating switchgrass CCCH genes using translational genomics methods will help further the goal of understanding switchgrass genetics and creating improved varieties. Results Taking advantage of the publicly-available switchgrass genomic and transcriptomic databases, we carried out a comprehensive analysis of switchgrass CCCH genes (PvC3Hs). A total of 103 PvC3Hs were identified and divided into 21 clades according to phylogenetic analysis. Genes in the same clade shared similar gene structure and conserved motifs. Chromosomal location analysis showed that most of the duplicated PvC3H gene pairs are in homeologous chromosomes. Evolution analysis of 19 selected PvC3H pairs showed that 42.1% of them were under diversifying selection. Expression atlas of the 103 PvC3Hs in 21 different organs, tissues and developmental stages revealed genes with higher expression levels in lignified cells, vascular cells, or reproductive tissues/organs, suggesting the potential function of these genes in development. We also found that eight PvC3Hs in Clade-XIV were orthologous to ABA- or stress- responsive CCCH genes in Arabidopsis and rice with functions annotated. Promoter and qRT-PCR analyses of Clade-XIV PvC3Hs showed that these eight genes were all responsive to ABA and various stresses. Conclusions Genome-wide analysis of PvC3Hs confirmed the recent allopolyploidization event of tetraploid switchgrass from two closely-related diploid progenitors. The short time window after the polyploidization event allowed the existence of a large number of PvC3H genes with a high positive selection pressure onto them. The homeologous pairs of PvC3Hs may contribute to the heterosis of switchgrass and its wide adaptation in different ecological niches. Phylogenetic and gene expression analyses provide informative clues for discovering PvC3H genes in some functional categories. Particularly, eight PvC3Hs in Clade-XIV were found involved in stress responses. This information provides a foundation for functional studies of these genes in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700