用户名: 密码: 验证码:
A de novo transcriptome of the noble scallop, Chlamys nobilis, focusing on mining transcripts for carotenoid-based coloration
详细信息    查看全文
  • 作者:Helu Liu (1) (2) (3)
    Huaiping Zheng (1) (2)
    Hongkuan Zhang (1) (2)
    Longhui Deng (1) (2)
    Wenhua Liu (1) (2)
    Shuqi Wang (1) (2)
    Fang Meng (1) (2)
    Yajun Wang (1) (2)
    Zhicheng Guo (1) (2)
    Shengkang Li (1) (2)
    Guofan Zhang (4)

    1. Key Laboratory of Marine Biotechnology of Guangdong Province
    ; Shantou University ; Shantou ; 515063 ; China
    2. Department of Education of Guangdong Province
    ; Mariculture Research Center for Subtropical Shellfish & Algae ; Shantou ; 515063 ; China
    3. Sanya Institute of Deep-sea Science and Engineering
    ; Chinese Academy of Science ; Sanya ; 572000 ; China
    4. Institute of Oceanology
    ; Chinese Academy of Sciences ; Qingdao ; 266071 ; China
  • 关键词:Chlamys nobilis ; Transcriptome sequencing ; Carotenoid coloration ; Candidate genes
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:2,685 KB
  • 参考文献:1. Matsuno, T (2001) Aquatic animal carotenoids. Fisheries Sci 67: pp. 771-83 CrossRef
    2. Chew, BP, Park, JS (2004) Carotenoid action on the immune response. The J Nutr 134: pp. 257S-61
    3. Hughes, DA (2001) Dietary carotenoids and human immune function. Nutrition 17: pp. 823-7 CrossRef
    4. Walsh, N, Dale, J, McGraw, KJ, Pointer, MA, Mundy, NI (2012) Candidate genes for carotenoid coloration in vertebrates and their expression profiles in the carotenoid-containing plumage and bill of a wild bird. Proc Biol Sci 279: pp. 58-66 CrossRef
    5. Chimsung, N, Lall, S, Tantikitti, C, Verlhac-Trichet, V, Milley, J (2013) Effects of dietary cholesterol on astaxanthin transport in plasma of Atlantic salmon (Salmo salar). Comp Biochem Phys B 165: pp. 73-81 CrossRef
    6. Olsen, RE, Kiessling, A, Milley, JE, Ross, NW, Lall, SP (2005) Effect of lipid source and bile salts in diet of Atlantic salmon, Salmo salar L., on astaxanthin blood levels. Aquaculture 250: pp. 804-12 CrossRef
    7. Maoka, T (2009) Recent progress in structural studies of carotenoids in animals and plants. Arch Biochem Biophys 483: pp. 191-5 CrossRef
    8. Reboul, E, Abou, L, Mikail, C, Ghiringhelli, O, Andre, M, Portugal, H (2005) Lutein transport by caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). J Biol Chem 387: pp. 455-61
    9. Bennekum, A, Werder, M, Thuahnai, ST, Han, CH, Duong, P, Williams, DL (2005) Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry-us 44: pp. 4517-25 CrossRef
    10. During, A, Doraiswamy, S, Harrison, EH (2008) Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism. J Lipid Res 49: pp. 1715-24 CrossRef
    11. Moussa, M, Landrier, JF, Reboul, E, Ghiringhelli, O, Comera, C, Collet, X (2008) Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J Nutr 138: pp. 1432-6
    12. Kiefer, C, Sumser, E, Wernet, MF, Lintig, J (2002) A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Proc Natl Acad Sci U S A 99: pp. 10581-6 CrossRef
    13. Sakudoh, T, Iizuka, T, Narukawa, J, Sezutsu, H, Kobayashi, I, Kuwazaki, S (2010) A CD36-related transmembrane protein Is coordinated with an intracellular lipid-binding protein in selective carotenoid transport for cocoon coloration. J Biol Chem 285: pp. 7739-51 CrossRef
    14. Sakudoh, T, Kuwazaki, S, Iizuka, T, Narukawa, J, Yamamoto, K, Uchino, K (2013) CD36 homolog divergence is responsible for the selectivity of carotenoid species migration to the silk gland of the silkworm Bombyx mori. J Lipid Res 54: pp. 482-95 CrossRef
    15. Watari, H, Arakane, F, Moog-Lutz, C, Kallen, CB, Tomasetto, C, Gerton, GL (1997) MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci U S A 94: pp. 8462-7 CrossRef
    16. Li, B, Vachali, P, Frederick, JM, Bernstein, PS (2011) Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry-us 50: pp. 2541-9 CrossRef
    17. Sakudoh, T, Tsuchida, K, Kataoka, H (2005) BmStart1, a novel carotenoid-binding protein isoform from Bombyx mori, is orthologous to MLN64, a mammalian cholesterol transporter. Biochem Bioph Res Co 336: pp. 1125-35 CrossRef
    18. Kiefer, C, Hessel, S, Lampert, JM, Vogt, K, Lederer, MO, Breithaupt, DE (2001) Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem 276: pp. 14110-6
    19. Lindqvist, A, Sharvill, J, Sharvill, DE, Andersson, S (2007) Loss-of-function mutation in carotenoid 15,15'-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. J Nutr 137: pp. 2346-50
    20. Eriksson, J, Larson, G, Gunnarsson, U, Bed鈥檋om, B, Tixier-Boichard, M, Stromstedt, L (2008) Identification of the Yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics 4: pp. e1000010 CrossRef
    21. During, A, Dawson, HD, Harrison, EH (2005) Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J Nutr 135: pp. 2305-12
    22. Herron, KL, McGrane, MM, Waters, D, Lofgren, IE, Clark, RM, Ordovas, JM (2006) The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs. J Nutr 136: pp. 1161-5
    23. Bhosale, P, Larson, AJ, Frederick, JM, Southwick, K, Thulin, CD, Bernstein, PS (2004) Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem 279: pp. 49447-54 CrossRef
    24. Wade, NM, Tollenaere, A, Hall, MR, Degnan, BM (2009) Evolution of a novel carotenoid-binding protein responsible for crustacean shell color. Mol Biol Evol 26: pp. 1851-64 CrossRef
    25. Lobo, GP, Hessel, S, Eichinger, A, Noy, N, Moise, AR, Wyss, A (2010) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. Faseb J 24: pp. 1656-66 CrossRef
    26. Xiao, JH, Durand, B, Chambon, P, Voorhees, JJ (1995) Endogenous retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers are the major functional forms regulating retinoid-responsive elements in adult human keratinocytes. Binding of ligands to RAR only is sufficient for RAR-RXR heterodimers to confer ligand-dependent activation of hRAR beta 2/RARE (DR5). J Biol Chem 270: pp. 3001-11 CrossRef
    27. Zheng, H, Liu, H, Zhang, T, Wang, S, Sun, Z, Liu, W (2010) Total carotenoid differences in scallop tissues of Chlamys nobilis (Bivalve: Pectinidae) with regard to gender and shell colour. Food Chem 122: pp. 1164-7 CrossRef
    28. Zheng, H, Zhang, T, Sun, Z, Liu, W, Liu, H (2012) Inheritance of shell colours in the noble scallop Chlamys nobilis (Bivalve: Pectinidae). Aquac Res 44: pp. 1229-35 CrossRef
    29. Liu H, Zheng H, Sun Z, Zhang Q, Wang D. Effect of artificial selection on total carotenoid content in the noble scallop / Chlamys nobilis. 18th International Pectinid Workshop 2011. p. 46鈥?7 (Abstract).
    30. You, Y, Huan, P, Liu, B (2012) RNAi assay in primary cells: a new method for gene function analysis in marine bivalve. Mol Biol Rep 39: pp. 8209-16 CrossRef
    31. Hou, R, Bao, Z, Wang, S, Su, H, Li, Y, Du, H (2011) Transcriptome sequencing and de novo analysis for yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One 6: pp. e21560 CrossRef
    32. Du, H, Bao, Z, Hou, R, Wang, S, Su, H, Yan, J (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 7: pp. e33311 CrossRef
    33. Jung, H, Lyons, RE, Dinh, H, Hurwood, DA, McWilliam, S, Mather, PB (2011) Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly, annotation and marker discovery. PLoS One 6: pp. e27938 CrossRef
    34. Kim, E, Magen, A, Ast, G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35: pp. 125-131 CrossRef
    35. Novaes, E, Drost, DR, Farmerie, WG, Pappas, GJ, Grattapaglia, D, Sederoff, RR (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: pp. 312 CrossRef
    36. Gilbert, JA, Clark, MS, Thorne, MAS, Toullec, J-Y, Meng, Y, Guan, LL (2011) Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 6: pp. e15919 CrossRef
    37. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: pp. 25-29 CrossRef
    38. Zhan, A, Hu, J, Hu, X, Hui, M, Wang, M, Peng, W (2009) Construction of microsatellite based linkage maps and identification of size related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim Genet 40: pp. 821-831 CrossRef
    39. Hale, MC, McCormick, CR, Jackson, JR, Dewoody, JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10: pp. 203 CrossRef
    40. Zakas, C, Schult, N, McHugh, D, Jones, KL, Wares, JP (2012) Transcriptome analysis and SNP development can resolve population differentiation of Streblospio benedicti, a developmentally dimorphic marine annelid. PLoS One 7: pp. e31613 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The noble scallop Chlamys nobilis Reeve displays polymorphism in shell and muscle colors. Previous research showed that the orange scallops with orange shell and muscle had a significantly higher carotenoid content than the brown ones with brown shell and white muscle. There is currently a need to identify candidate genes associated with carotenoid-based coloration. Results In the present study, 454 GS-FLX sequencing of noble scallop transcriptome yielded 1,181,060 clean sequence reads, which were assembled into 49,717 isotigs, leaving 110,158 reads as the singletons. Of the 159,875 unique sequences, 11.84% isotigs and 9.35% singletons were annotated. Moreover, 3,844 SSRs and over 120,000 high confidence variants (SNPs and INDELs) were identified. Especially, one class B scavenge receptor termed SRB-like-3 was discovered to express only in orange scallops and absent in brown ones, suggesting a significant association with high carotenoid content. Down-regulation of SRB-like-3 mRNA by RNA interference remarkably decreased blood carotenoid, providing compelling evidence that SRB-like-3 is an ideal candidate gene controlling carotenoid deposition and determining orange coloration. Conclusion Transcriptome analysis of noble scallop reveals a novel scavenger receptor significantly associated with orange scallop rich in carotenoid content. Our findings pave the way for further functional elucidation of this gene and molecular basis of carotenoid deposition in orange scallop.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700