用户名: 密码: 验证码:
The brain in three crustaceans from cavernous darkness
详细信息    查看全文
  • 作者:Martin EJ Stegner (1)
    Torben Stemme (2)
    Thomas M Iliffe (3)
    Stefan Richter (1)
    Christian S Wirkner (1)

    1. Allgemeine und Spezielle Zoologie
    ; Institut f眉r Biowissenschaften ; Universit盲t Rostock ; Universit盲tsplatz 2 ; 18055 ; Rostock ; Germany
    2. Division of Cell Biology
    ; University of Veterinary Medicine Hannover ; Bischhofsholer Damm 15 ; 30173 ; Hannover ; Germany
    3. Department of Marine Biology
    ; Texas A&M University at Galveston ; 200 Seawolf Parkway ; Galveston ; TX ; 77553 ; USA
  • 关键词:Optic neuropil ; Central complex ; Hemiellipsoid body ; Neurophylogeny ; Olfactory globular tract ; Olfactory lobe ; Ventral nerve cord ; Mechanosensory neuropil
  • 刊名:BMC Neuroscience
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:79,394 KB
  • 参考文献:1. Richter, S, Scholtz, G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39: pp. 113-36
    2. Bowman, TE, Garner, SP, Hessler, RR, Iliffe, TM, Sanders, HL (1985) Mictacea, a new order of Crustacea Peracarida. J Crustacean Biol 5: pp. 74-8
    3. Martin, JW, Davis, GE (2001) An updated classification of the recent Crustacea. Nat Hist Mus Los Angel Cty, Sci Ser 39: pp. 1-124
    4. Poore, GCB (2005) Peracarida: monophyly, relationships and evolutionary success. Nauplius 13: pp. 1-27
    5. Gutu, M (1998) Spelaeogriphacea and Mictacea (partim) suborders of a new order, Cosinzeneacea (Crustacea, Peracarida). Trav Mus Hist Nat 鈥楪rigore Antipa鈥?40: pp. 121-9
    6. Gutu, M, Iliffe, TM (1998) Description of a new hirsutiid (n.g., n.sp.) and reassignment of this family from Order Mictacea to the new Order, Bochusacea (Crustacea, Peracarida). Trav Mus Hist Nat 鈥楪rigore Antipa鈥?40: pp. 93-120
    7. Wagner, G (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). A study on their morphology, taxonomy, phylogeny and biogeography. Nationaal Natuurhistorisch Museum Leiden, Leiden
    8. Wirkner, CS, Richter, S (2010) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26: pp. 143-67
    9. Holmgren, N (1916) Zur Vergleichenden Anatomie des Gehirns von Polychaeten. Onychophoren, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska Vetenskapsakad Handl 56: pp. 1-303
    10. Hanstr枚m, B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Ber眉cksichtigung seiner Funktion. Springer Verlag, Berlin
    11. Hanstr枚m, B (1947) The brain, the sense organs, and the incretory organs of the head in the Crustacea Malacostraca. Kungliga Fysiografiska Sallskapets Handlingar N F 58: pp. 1-44
    12. Loesel, R, Nssel, DR, Strausfeld, NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31: pp. 77-91
    13. Beltz, BS, Kordas, K, Lee, MM, Long, JB, Benton, JL, Sandeman, DC (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455: pp. 260-9
    14. Harzsch, S (2003) Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda?. Arthropod Struct Dev 32: pp. 17-37
    15. Harzsch, S (2006) Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phylogeny. Integr Comp Biol 46: pp. 182-94
    16. Harzsch, S (2007) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species, Phylogeny Evol 1: pp. 33-57
    17. Schachtner, J, Schmidt, M, Homberg, U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea鈥?鈥塇exapoda). Arthropod Struc Dev 34: pp. 257-99
    18. Strausfeld, NJ (2009) Brain organization and the origin of insects: an assessment. Proc Biol Sci 276: pp. 1929-37
    19. Harzsch, S, Hansson, BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9: pp. 58
    20. Krieger, J, Sandeman, RE, Sandeman, DC, Hansson, BS, Harzsch, S (2010) Brain architecture of the largest living land arthropod, the giant robber crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway?. Front Zool 7: pp. 25
    21. Krieger, J, Sombke, A, Seefluth, F, Kenning, M, Hansson, BS, Harzsch, S (2012) Comparative brain architecture of the European shore Crab Carcinus maenas (Brachyura) and the Common hermit Crab Pagurus bernhardus (Anomura). Cell Tissue Res 348: pp. 47-69
    22. Kenning, M, M眉ller, C, Wirkner, CS, Harzsch, S (2013) The Malacostraca (Crustacea) from a neurophylogenetic perspective: new insights from brain architecture in Nebalia herbstii Leach, 1814 (Leptostraca, Phyllocarida). Zool Anz J Comp Zool 252: pp. 319-36
    23. Sullivan, JM, Beltz, BS (2004) Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470: pp. 25-38
    24. Sandeman, D, Scholtz, G Ground plans, evolutionary changes, and homologies in decapod crustacean brains. In: Breidbach, O, Kutsch, W eds. (1995) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhuser, Basel, pp. 329-347
    25. Johansson, KUI, Hallberg, E (1992) The organization of the olfactory lobes in Euphausiacea and Mysidacea (Crustacea, Malacostraca). Zoomorphology 112: pp. 81-9
    26. Moreau, X, Benzid, D, Jong, L, Barth茅l茅my, RM, Casanova, JP (2002) Evidence for the presence of serotonin in Mysidacea (Crustacea, Peracarida) as revealed by fluorescence immunohistochemistry. Cell Tissue Res 310: pp. 359-71
    27. Hanstr枚m, B (1933) Neue Untersuchungen 眉ber Sinnesorgane und Nervensystem der Crustaceen.II. Zool Jahrb Abt Anat Ontog Tiere 56: pp. 387-520
    28. Oelze, A (1931) Beitrge zur Anatomie von Diastylis rathkei. Zool Jahrb Abt Anat Ontog Tiere 54: pp. 235-94
    29. Stegner, MEJ, Fritsch, M, Richter, S The central complex in Crustacea. In: Wgele, JW, Bartholomus, T eds. (2014) Deep Metazoan Phylogeny: The backbone of the Tree of Life. De Gruyter, Berlin, pp. 361-84
    30. Strausfeld, NJ (2005) Evolution of Crustacean Optic Lobes and Origins of Chiasmata. Arthropod Struct Dev 34: pp. 235-56
    31. Harzsch, S, Rieger, V, Krieger, J, Seefluth, F, Strausfeld, NJ, Hansson, BS (2011) Transition from marine to terrestrial ecologies: changes in olfactory and tritocerebral neuropils in land-living isopods. Arthropod Struct Dev 40: pp. 244-57
    32. Kenning, M, Harzsch, S (2013) Brain anatomy of the marine isopod Saduria entomon Linnaeus, 1758 (Valvifera, Isopoda) with special emphasis on the olfactory pathway. Front Neuroanat 7: pp. 32
    33. Henry, L (1948) The nervous system and the segmentation of the head in the Annulata. Section IV Arthropoda. Microentomol 13: pp. 1-23
    34. Ungerer, P, Geppert, M, Wolff, C (2011) Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana. Integr Zool 6: pp. 28-44
    35. Wirkner, CS, Richter, S (2007) The circulatory system and its spatial relations to other major organ systems in Spelaeogriphacea and Mictacea (Malacostraca, Crustacea) 鈥?a three-dimensional analysis. Zool J Linn Soc 149: pp. 629-42
    36. Wirkner, CS, Richter, S (2009) The hemolymph vascular system in Tethysbaena argentarii (Thermosbaenacea, Monodellidae) as revealed by 3D reconstruction of semi-thin sections. J Crustacean Biol 29: pp. 13-7
    37. Bowman, TE, Iliffe, TM (1985) Mictocaris halope, a new unusual peracaridan crustacean from marine caves on Bermuda. J Crustacean Biol 5: pp. 58-73
    38. Gordon, I (1957) On Spelaeogriphus, a new cavernicolous crustacean from South Africa. Bull br Mus nat Hist Zool 5: pp. 31-47
    39. Wagner, HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida) 鈥?A study on their morphology, taxonomy, phylogeny and biogeography. Zool Verhand 291: pp. 3-338
    40. Monod, T, Cals, P Ordre des Thermosbaenac茅s (Thermosbaenacea Monod, 1927). In: Forest, J eds. (1999) Trait茅 de Zoologie. Anatomie, Syst茅matique, Biologie. Tome VII, Fascicule IIIA, Crustac茅s P茅racarides. M茅moires de l鈥橧nstitut Oc茅anographique Fondation Albert Ier, Prince de Monaco 19, Paris, pp. 11-34
    41. Jaume, D (2008) Global diversity of spelaeogriphaceans & thermosbaenaceans (Crustacea; Spelaeogriphacea & Thermosbaenacea) in freshwater. Hydrobiologia 595: pp. 219-24
    42. Harzsch, S (2002) Phylogenetic significance of the crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453: pp. 10-21
    43. Strausfeld, NJ (2012) Arthropod Brains: Evolution, Functional Elegance, and Historical Significance. Harvard University Press, Cambridge, London
    44. Homberg, U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37: pp. 347-62
    45. Loesel, R, Richter, S Neurophylogeny - from description to character analysis. In: Wgele, JW, Bartholomus, T eds. (2014) Deep Metazoan Phylogeny: The backbone of the Tree of Life. De Gruyter, Berlin, pp. 505-14
    46. Schram, FR, Hof, CHJ Fossils and the interrelationships of major crustacean groups. In: Edgecombe, GD eds. (1998) Arthropod Fossils and Phylogeny. Columbia University Press, New York, pp. 233-302
    47. Wills, MA A phylogeny of recent Crustacea derived from morphological characters. In: Fortey, RA, Thomas, RH eds. (1998) Arthropod Relationships. Chapman and Hall, London, pp. 189-209
    48. Siewing, R (1956) Untersuchungen zur Morphologie der Malacostraca (Crustacea). Zool Jahrb Abt Anat Ontog Tiere 75: pp. 39-176
    49. Ax, P (1999) Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Stuttgart, Jena, L眉beck, Ulm, Gustav Fischer Verlag
    50. Watling, L Towards understanding the relationship of the peracaridan orders: the necessity of determing exact homologies. In: Schram, FR, Vaupel Klein, JC eds. (1999) Crustaceans and the Biodiversity Crisis. Proceedings of the Fourth International Crustacean Congress. Brill, Leiden, pp. 73-89
    51. Meland, K, Willassen, E (2007) The disunity of 鈥淢ysidacea鈥?(Crustacea). Mol Phylogenet Evol 44: pp. 1083-104
    52. Jenner, RA, N铆 Dhubhghaill, C, Ferla, MP, Wills, MA (2009) Eumalacostracan phylogeny and total evidence: limitations of the usual suspects. BMC Evol Biol 9: pp. 21
    53. Sombke, A, Harzsch, S, Hansson, BS (2011) Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 36: pp. 43-61
    54. Stegner, MEJ, Richter, S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40: pp. 221-43
    55. Sandeman, DC, Sandeman, RE, Derby, C, Schmidt, M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters - a common nomenclature for homologous structures. Biol Bull 183: pp. 304-26
    56. Richter, S, Loesel, R, Purschke, G, Schmidt-Rhaesa, A, Scholtz, G, Stach, T (2010) Invertebrate neurophylogeny - suggested terms and definitions for a neuroanatomical glossary. Front Zool 7: pp. 29
    57. Stella, E (1951) Monodella argentarii n. sp. di Thermosbaenacea (Crustacea Peracarida) limnotroglobio di Monte Argentario. Arch Zool Ital 36: pp. 1-15
    58. Sandeman, DC, Scholtz, G, Sandeman, RE (1993) Brain evolution in decapod Crustacea. J Exp Zool 265: pp. 112-33
    59. Huckstorf, K, Wirkner, CS (2011) Comparative morphology of the hemolymph vascular system in Krill (Euphausiacea; Crustacea). Arthropod Struct Dev 40: pp. 39-53
    60. Sinakevitch, I, Douglass, JK, Scholtz, G, Loesel, R, Strausfeld, NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467: pp. 150-72
    61. Elofsson, R, Hessler, RR (1990) Central nervous system of Hutchinsoniella macracantha (Cephalocarida). J Crustacean Biol 10: pp. 423-39
    62. Fanenbruck, M, Harzsch, S, Wgele, JW (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci U S A 101: pp. 3868-73
    63. Brenneis, G, Richter, S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea) - an immunohistochemical study and 3D-reconstruction. J Morphol 271: pp. 169-89
    64. Culver, DC, Wilkens, H Critical review of the relevant theories of the evolution of subterranean animals. In: Wilkens, H, Culver, DC, Humphreys, WF eds. (2001) Ecosystems of the world. Vol. 30, Subterranean ecosystems. Elsevier, Amsterdam, pp. 381-98
    65. Stemme, T, Eickhoff, R, Bicker, G (2014) Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea). Tissue Cell 46: pp. 260-3
    66. Fanenbruck, M, Harzsch, S (2005) A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct Dev 34: pp. 343-78
    67. Stemme, T, Iliffe, TM, Bicker, G, Harzsch, S, Koenemann, S (2012) Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 12: pp. 168
    68. Harzsch, S, Dircksen, H, Beltz, BS (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system?. Cell Tissue Res 335: pp. 417-29
    69. Friedrich, M (2013) Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol 53: pp. 50-67
    70. Pfeiffer, K, Homberg, U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59: pp. 165-84
    71. Utting, M, Agricola, H, Sandeman, RE, Sandeman, DC (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416: pp. 245-61
    72. Thompson, KS, Zeidler, MP, Bacon, JP (1994) Comparative anatomy of serotonin-like immunoreactive neurons in isopods: putative homologues in several species. J Comp Neurol 347: pp. 553-69
    73. Boyan, G, Reichert, H (2011) Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 34: pp. 247-57
    74. Langworthy, K, Helluy, S, Benton, J, Beltz, BS (1997) Amines and peptides in the brain of the American lobster: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288: pp. 191-206
    75. Boyan, G, Reichert, H, Hirth, F (2003) Commissure formation in the embryonic insect brain. Arthropod Struct Dev 32: pp. 61-77
    76. Ammar, D, Nazari, EM, Rauh M眉ller, YM, Allodi, S (2008) New insights on the olfactory lobe of decapod crustaceans. Brain Behav Evol 72: pp. 27-36
    77. Sullivan, JM, Beltz, BS (2001) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441: pp. 9-22
    78. Wolff, G, Harzsch, S, Hansson, BS, Brown, S, Strausfeld, N (2012) Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. J Comp Neurol 520: pp. 2824-46
    79. Bellonci, G (1882) Nuove ricerche sulla struttura del ganglio ottico della Squilla mantis. Mem D Accad d Sc d Ist di Bologna Ser. 4, T. 3. pp. 419-426
    80. Hanstr枚m, B (1931) Neue Untersuchungen der Sinnesorgane und Nervenzentren der Crustaceen. I. Zool Jahrb Abt Anat Ontog Tiere 23: pp. 80-236
    81. Sandeman, DC, Okajima, A (1972) Statocyst-induced eye movement in the crab Scylla serrata. I. The sensory input from the statocyst. J Exp Biol 57: pp. 187-204
    82. Fraser, PJ (1974) Interneurones in crab connectives (Carcinus maenas (L.)): directional statocyst fibres. J Exp Biol 61: pp. 615-28
    83. Sandeman, DC, Denburg, JL (1976) The central projections of chemoreceptor axons in the crayfish revealed by axoplasmic transport. Brain Res 115: pp. 492-6
    84. Yoshino, M, Kondoh, Y, Hisada, M (1983) Projections of the statocyst sensory neurons associated with crescent hairs in the crayfish, Procambarus clarkii Girard. Cell Tissue Res 230: pp. 37-48
    85. Roye, DB (1986) The central distribution of movement sensitive afferent fibers from the antennular short hair sensilla of Callinectes sapidus. Mar Behav Physiol 12: pp. 181-96
    86. Blaustein, DN, Derby, CD, Simmons, RB, Beall, AC (1988) Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers. J Crustacean Biol 8: pp. 493-519
    87. Schmidt, M, Ache, BW (1993) Antennular projections to the midbrain of the spiny lobster. III. Central arborizations of motoneurons. J Comp Neurol 336: pp. 583-94
    88. Derby, CD, Fortier, JK, Harrison, PJ, Cate, HS (2003) The peripheral and central antennular pathway of the Caribbean stomatopod crustacean Neogonodactylus oerstedii. Arthropod Struct Dev 32: pp. 175-88
    89. Tautz, J, M眉ller-Tautz, R (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218: pp. 415-25
    90. Fryer, G (1964) Studies on the functional morphology and feeding mechanisms of Monodella argentarii (Thermosbaenacea). Trans R Soc Edin 66: pp. 49-90
    91. Stella, E (1953) Sur Monodella argentarii Stella, esp猫ce de Crustac茅 Thermosbenac茅 des eaux d鈥檜ne grotte de l鈥橧talie centrale (Monte Argentario, Toscana). Hydrobiologia V: pp. 226-332
    92. Mulloney, B, Tschuluun, N, Hall, WM (2003) Architectonics of crayfish ganglia. Microsc Res Tech 60: pp. 253-65
    93. Harzsch, S, Sandeman, DC, Chaigneau, J Morphology and development of the central nervous system. In: Forest, J, Vaupel Klein, JC eds. (2012) Treatise on Zoology 鈥?Anatomy, Taxonomy, Biology. The Crustacea. Brill, Leiden, pp. 9-236
    94. Bouvier, EL (1889) Le syst猫me nerveux des crustac茅s d茅capodes et ses rapports avec l鈥檃ppareil circulatoire. Dissertation, 脡cole sup茅ricure de pharmacie de Paris
    95. Sandeman, DC (1967) Vascular circulation in the brain, optic lobes and thoracic ganglion of the crab Carcinus. Proc Roy Soc B 168: pp. 82-90
    96. Keiler, J, Richter, S, Wirkner, CS (2013) Evolutionary morphology of the hemolymph vascular system in hermit and king crabs (Crustacea: Decapoda: Anomala). J Morph 274: pp. 759-78
    97. Claus, C (1888) 脺ber den Organismus der Nebaliden und die systematische Stellung der Leptostraken. Arbeiten aus dem zoologischen Institut der Universitt Wien und der zoologischen Station Triest 8: pp. 1-148
    98. Manton, SM (1934) On the embryology of the crustacean Nebalia bipes. Philos Trans R Soc Lond B Biol Sci 223: pp. 163-238
    99. Ando, H, Kuwasawa, K (2004) Neuronal and neurohormonal control of the heart in the stomatopod crustacean, Squilla oratoria. J Exp Biol 207: pp. 4663-77
    100. Schmitz, EH (1989) Anatomy of the central nervous system of Armadillidium vulgare (Latreille) (Isopoda). J Crustacean Biol 9: pp. 217-27
    101. Kreissl, S, Weiss, T, Djokaj, S, Balezina, O, Rathmayer, W (1999) Allatostatin modulates skeletal muscle performance in crustaceans through pre- and postsynaptic effects. Eur J Neurosci 11: pp. 2519-30
    102. Chaudonneret, J (1978) La phylogen猫se du syst猫me nerveux ann茅lido-arthropodien. Bull Soc Zool France 103: pp. 69-95
    103. Bullock, TH, Horridge, GA (1965) Structure and Function in the Nervous Systems of Invertebrates. W.H. Freeman and Company, San Francisco
    104. Schneider, H, Trimmer, BA, Rapus, J, Eckert, M, Valentine, DE, Kravitz, EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329: pp. 129-42
    105. Sombke, A, Rosenberg, J, Hilken, G Chilopoda 鈥?Nervous system. In: Minelli, A eds. (2011) Treatise on Zoology 鈥?Anatomy, Taxonomy, Biology. The Myriapoda. Brill, Boston, pp. 217-34
    106. Stegner, MEJ, Brenneis, G, Richter, S (2014) The ventral nerve cord of Cephalocarida (Crustacea): New insights into the ground pattern of Tetraconata. J Morphol 275: pp. 269-94
    107. Manton, S (1928) On some points in the anatomy and habits of the lophogastrid Crustacea. T Roy Soc Edin-Earth 56: pp. 103-19
    108. Manton, S (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Philos Trans R Soc Lond B Biol Sci 216: pp. 363-463
    109. Hickman VV. The embryology of the syncarid crustacean, / Anaspides tasmaniae. Papers and Proceedings of the Royal Society of Tasmania 1937, 1-35.
    110. Chaudonneret, J (1957) Remarques sur le syst猫me nerveux des derniers segments thoraciques de la Squille (Crustac茅 Stomatopode). Ann Sci Nat Zool 19: pp. 225-32
    111. Chaudonneret, J (1956) Le syst猫me nerveux de la r茅gion gnathale de l鈥櫭ヽrivisse Cambarus affinis (Say). Ann Sci Nat Zool 18: pp. 33-61
    112. Delaleu, JC (1970) Le syst猫me nerveux intrap茅ricardique et ses relations avec le syst猫me nerveux central chez trois Oniscoides: Porcellio dilatatus (B.), Helleria brevicornis (E.) et Ligia oceanica (L.). Bull Soc Zool Fr 95: pp. 201-10
    113. Demassieux, C (1979) Le syst猫me neuros茅cr茅teur du Crustac茅 Isopode Asellus aquaticus (Linn茅). Crustaceana 37: pp. 71-9
    114. Weiss, T, Kreissl, S, Rathmayer, W (2003) Localization of a FMRFamide-related peptide in efferent neurons and analysis of neuromuscular effects of DRNFLRFamide (DF2) in the crustacean Idotea emarginata. Eur J Neurosci 17: pp. 239-48
    115. Kirsch, R, Richter, S (2007) The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 36: pp. 143-56
    116. Stegner MEJS, Richter S. Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning. Zoomorphology, in press.
    117. Legendre, R (1959) Contribution 脿 l鈥櫭﹖ude du syst猫me nerveux des Aran茅ides. Ann Sci Nat Zool 1: pp. 339-473
    118. Fritsch, M, Richter, S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): an immunohistochemical survey. J Morphol 271: pp. 1457-81
    119. Harzsch, S, Anger, K, Dawirs, RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41: pp. 477-84
    120. Stemme, T, Iliffe, TM, Reumont, BM, Koenemann, S, Harzsch, S, Bicker, G (2013) Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda?. BMC Evol Biol 13: pp. 119
  • 刊物主题:Neurosciences; Neurobiology; Animal Models;
  • 出版者:BioMed Central
  • ISSN:1471-2202
文摘
Background While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. In addition, the mictocaridid Mictocaris halope was studied with a combination of immunolabeling (tubulin, nuclear counter-stains) and confocal laser scanning microscopy, addressing also the ventral nerve cord. Results Adjacent to the terminal medulla, all three representatives exhibit a distal protocerebral neuropil, which is reminiscent of the lobula in other Malacostraca, but also allows for an alternative interpretation in M. halope and the thermosbaenacean Tethysbaena argentarii. A central complex occurs in all three taxa, most distinctively in the spelaeogriphacean Spelaeogriphus lepidops. The deutocerebral olfactory lobe in M. halope and S. lepidops is large. The comparably smaller olfactory lobe in T. argentarii appears to be associated with a unique additional deutocerebral neuropil. A small hemiellipsoid body exists only in the protocerebrum of T. argentarii. Distinctive mechanosensory neuropils corresponding to other malacostracans are missing. Conclusions The considerable reduction of the optic lobe in the studied taxa is higher than in any other blind malacostracan. The large size of deutocerebral olfactory centers implies an important role of the olfactory sense. The presence of a distinctive central complex in the blind S. lepidops adds further support to a central-coordinating over a visual function of this structure. The lack of a hemiellipsoid body in M. halope and S. lepidops suggests that their terminal medulla takes over the function of a second order olfactory center completely, as in some other peracarids. The reduction of the optic lobe and hemiellipsoid body is suggested to have occurred several times independently within Peracarida. The missing optic sense in the studied taxa is not correlated with an emphasized mechanosense.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700