用户名: 密码: 验证码:
Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator
详细信息    查看全文
  • 作者:Dongwhi Choi ; Sangmin Lee ; Sang Min Park ; Handong Cho ; Woonbong Hwang…
  • 关键词:contact electrification ; triboelectric nanogenerator ; anodized aluminum xide ; superhydrophobic tubular system ; compact design
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:8
  • 期:8
  • 页码:2481-2491
  • 全文大小:1,992 KB
  • 参考文献:[1]Brown, K. S. Bright future鈥攐r brief flare鈥攆or renewable energy? Science 1999, 285, 678鈥?80.View Article
    [2]Dincer, I. Renewable energy and sustainable development: A crucial review. Renewable Sustainable Energy Rev. 2000, 4, 157鈥?75.View Article
    [3]Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912鈥?19.View Article
    [4]Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847鈥?53.View Article
    [5]Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z.-H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461鈥?468.View Article
    [6]Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405鈥?412.View Article
    [7]Lee, S.; Hong, J. I.; Xu, C.; Lee, M.; Kim, D.; Lin, L.; Hwang, W.; Wang, Z. L. Toward robust nanogenerators using aluminum substrate. Adv. Mater. 2012, 24, 4398鈥?402.View Article
    [8]Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308鈥?12.View Article
    [9]Baytekin, H. T.; Baytekin, B.; Soh, S.; Grzybowski, B. A. Is water necessary for contact electrification? Angew. Chem. Int. Ed. 2011, 50, 6766鈥?770.View Article
    [10]Terris, B. D.; Stern, J. E.; Rugar, D.; Mamin, H. J. Contact electrification using force microscopy. Phys. Rev. Lett. 1989, 63, 2669.View Article
    [11]McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188鈥?207.View Article
    [12]Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282鈥?289.View Article
    [13]Lin, Z.-H.; Cheng, G.; Wu, W. Z.; Pradel, K. C.; Wang, Z. L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 2014, 8, 6440鈥?448.View Article
    [14]Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.
    [15]Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604鈥?08.View Article
    [16]Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361鈥?366.View Article
    [17]Choi, D.; Lee, H.; Im, D. J.; Kang, I. S.; Lim, G.; Kim, D. S.; Kang, K. H. Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 2013, 3, 2037.
    [18]Choi, D.; Kim, D. S. A zeta (味)-pipet tip to reduce the spontaneously induced electrical charge of a dispensed aqueous droplet. Langmuir 2014, 30, 6644鈥?648.View Article
    [19]Lin, Z. H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 2013, 52, 12545鈥?2549.View Article
    [20]Cheng, G.; Lin, Z.-H.; Du, Z.-L.; Wang, Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932鈥?939.View Article
    [21]Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031鈥?036.View Article
    [22]Kwon, S. H.; Park, J.; Kim, W. K.; Yang, Y. J.; Lee, E.; Han, C. J.; Park, S. Y.; Lee, J.; Kim, Y. S. An effective energy harvesting method from natural water motion active transducer. Energy Environ. Sci. 2014, 7, 3279鈥?283.View Article
    [23]Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 27, 4690鈥?696.View Article
    [24]Kim, Y.; Lee, S.; Cho, H.; Park, B.; Kim, D.; Hwang, W. Robust superhydrophilic/hydrophobic surface based on self-aggregated Al2O3 nanowires by single-step anodization and self-assembly method. ACS Appl. Mater. Interfaces 2012, 4, 5074鈥?078.View Article
    [25]Ravelo, B.; Duval, F.; Kane, S.; Nsom, B. Demonstration of the triboelectricity effect by the flow of liquid water in the insulating pipe. J. Electrost. 2011, 69, 473鈥?78.View Article
    [26]Yatsuzuka, K.; Mizuno, Y.; Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J. Electrost. 1994, 32, 157鈥?71.View Article
    [27]Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788鈥?796.View Article
  • 作者单位:Dongwhi Choi (1)
    Sangmin Lee (2)
    Sang Min Park (1)
    Handong Cho (1)
    Woonbong Hwang (1)
    Dong Sung Kim (1)

    1. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
    2. School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 156-756, South Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700