用户名: 密码: 验证码:
The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys
详细信息    查看全文
  • 作者:Yang-Huan Zhang ; Li-Cui Chen ; Tai Yang ; Chao Xu ; Hui-Ping Ren…
  • 关键词:A2B7 ; type electrode alloy ; Adding Si ; Annealing treatment ; Structure ; Electrochemical performances
  • 刊名:Rare Metals
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:34
  • 期:8
  • 页码:569-579
  • 全文大小:1,105 KB
  • 参考文献:[1]Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32(9):1121.View Article
    [2]Willems JJG, Buschow KHJ. From permanent magnets to rechargeable hydride electrodes. J Less-Common Met. 1987;129(15):13.View Article
    [3]Ovshinsky SR, Fetcenko MA, Ross J. A nickel metal hydride battery for electric vehicles. Science. 1993;260(5105):176.View Article
    [4]Tsukahara M, Kamiya T, Takahashi K, Kawabata A, Sakurai S, Shi J, Takeshita HT, Kuriyama N, Sakai T. Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process. J Electrochem Soc. 2000;147(8):2941.View Article
    [5]Li JH, Liu BZ, Han SM, Hu L, Zhao X, Wang MZ. Phase structure and hydrogen storage properties of LaMg3.70Ni1.18 alloy. Rare Met. 2011;30(5):458.View Article
    [6]Zhang YH, Zhao C, Yang T, Shang HW, Xu C, Zhao DL. Comparative study of electrochemical performances of the as-melt Mg20Ni10–Mx (M?=?None, Cu, Co., Mn; x?=?0, 4) alloys applied to Ni/metal hydride (MH) battery. J Alloys Compd. 2013;555:131.View Article
    [7]Kadir K, Sakai T, Uehara I. RMg2Ni9 (R?=?La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd. 1997;257(1-):115.View Article
    [8]Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd. 2000;311(2):L5.View Article
    [9]Liu YF, Pan HG, Gao MX, Wang QD. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011;21(13):4743.View Article
    [10]Liu YF, Pan HG, Gao MX, Li R, Lei YQ. Effect of Co content on the structural and electrochemical properties of the La0.7Mg0.3Ni3.4?em class="EmphasisTypeItalic">x Mn0.1Co x hydride alloys: II. Electrochemical properties. J Alloys Compd. 2004;376(1-):304.View Article
    [11]Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL. Cycle stabilities of the La0.7Mg0.3Ni2.55?em class="EmphasisTypeItalic">x Co0.45M x (M?=?Fe, Mn, Al; x?=?0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloys Compd. 2008;458(1-):340.View Article
    [12]Shen XQ, Chen YG, Tao MD, Wu CL, Deng G, Kang ZZ. The structure and high-temperature (333?K) electrochemical performance of La0.8?em class="EmphasisTypeItalic">x Ce x Mg0.2Ni3.5 (x?=?0.00-.20) hydrogen storage alloys. Int J Hydrogen Energy. 2009;34(8):3395.View Article
    [13]Zhang YH, Yang T, Cai Y, Hou ZH, Ren HP, Zhao DL. Electrochemical hydrogen storage characteristics of La0.75-x M x Mg0.25Ni3.2Co0.2Al0.1 (M?=?Zr, Pr; x?=?0, 0.1) alloys prepared by melt spinning. Rare Met. 2012;31(5):457.View Article
    [14]Shen XG, Chen YG, Tao MD, Wu CL, Deng G, Kang ZZ. The structure and 233?K electrochemical properties of La0.8?em class="EmphasisTypeItalic">x Nd x Mg0.2Ni3.1Co0.25Al0.15 (x?=?0.0-.4) hydrogen storage alloys. Int J Hydrogen Energy. 2009;34(6):2661.View Article
    [15]Dong ZW, Wu YM, Ma LQ, Wang LD, Shen XD, Wang LM. Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33?em class="EmphasisTypeItalic">x Ca x Ni2.75Co0.25?(x?=?0-.15) electrode alloys. Int J Hydrogen Energy. 2011;36(4):3050.View Article
    [16]Liu YF, Pan HG, Yue YJ, Wu XF, Chen N, Lei YQ. Cycling durability and degradation behavior of La–Mg–Ni–Co-type metal hydride electrodes. J Alloys Compd. 2005;395(1-):291.View Article
    [17]Simi?i? MV, Zduji? M, Dimitrijevi? R, Nikoli?-Bujanovi? LJ, Popovi? NH. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying. J Power Sour. 2006;158(1):730.View Article
    [18]Meli F, Zuettel A, Schlapbach L. Surface and bulk properties of LaNi5?em class="EmphasisTypeItalic">x Si x alloys from the viewpoint of battery applications. J Alloys Compd. 1992;190(1):17.View Article
    [19]Sakai T, Oguro K, Miyamura H, Kuriyama N, Kato A, Ishikawa H, Iwakura C. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries. J Less-Common Met. 1990;161(2):193.View Article
    [20]Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL. Investigation on structures and electrochemical performances of the as-cast and -quenched La0.7Mg0.3Co0.45Ni2.55?em class="EmphasisTypeItalic">x Fe x (x?=?0-.4) electrode alloys. Int J Hydrogen Energy. 2007;32(18):4627.View Article
    [21]Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Mater. 2007;56(10):841.View Article
    [22]Willems JJG. Metal hydride electrodes stability of LaNi5-related compounds. Philips J Res. 1984;39(1):1.
    [23]Sakai T, Hazama T, Miyamura H, Kuriyama N, Kato A, Ishikawa H. Rare-earth-based alloy electrodes for a nickel-metal hydride battery. J Less-Common Met. 1991;172-74(3):1175.View Article
    [24]Ratnakumar BV, Witham C,
  • 作者单位:Yang-Huan Zhang (1)
    Li-Cui Chen (1)
    Tai Yang (1)
    Chao Xu (1)
    Hui-Ping Ren (1)
    Dong-Liang Zhao (2)

    1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China
    2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, 100081, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
In order to improve the electrochemical cycle stability of the RE–Mg–Ni-based A2B7-type electrode alloys, a small amount of Si has been added into the alloys. The casting and annealing technologies were adopted to fabricate the La0.8Mg0.2Ni3.3Co0.2Si x (x?=?0-.2) electrode alloys. The impacts of the addition of Si and annealing treatment on the structures and electrochemical performances of the alloys were investigated systematically. The results obtained by XRD and SEM show that all the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi3. Both adding Si and the annealing treatment lead to an evident change in the phase abundance and cell parameters of (La, Mg)2Ni7 and LaNi5 major phases of the alloy without altering its main phase component. Moreover, the annealing treatment has the composition of the alloy distributed more homogeneously overall and simultaneously causes the grain of the alloy to be coarsened obviously. The electrochemical measurements indicate that adding Si and the annealing treatment give a significant rise to the influence on the electrochemical performances of the alloys. In brief, the cycle stability of the as-cast and annealed alloys evidently increases with the rising of Si content, while their discharge capacities obviously decrease under the same circumstances. Furthermore, the electrochemical kinetic properties of the electrode alloys, including the high rate discharge ability, the limiting current density (I L), hydrogen diffusion coefficient (D), and the charge-transfer resistance, first augment and then decline with the rising of Si content. Similarly, it is found that the above-mentioned electrochemical properties first mount up and then go down with the rising annealing temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700