用户名: 密码: 验证码:
Thermodynamic and Kinetic Analysis of Lowtemperature Thermal Reduction of Graphene Oxide
详细信息    查看全文
  • 作者:Kuibo Yin ; Haitao Li ; Yidong Xia ; Hengchang Bi ; Jun Sun ; Zhiguo Liu&#8230
  • 关键词:Graphene oxide ; Activation energy ; Thermal deoxygenation
  • 刊名:Nano-Micro Letters
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:3
  • 期:1
  • 页码:51-55
  • 全文大小:146KB
  • 参考文献:[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004). http://鈥媎x.鈥媎oi.鈥媜rg /10.1126/science.1102896CrossRef
    [2]S. Park and R. S. Ruoff, Nat. Nanotech. 4, 217 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1038/nnano.2009.58CrossRef
    [3]X. S. Li, W. W. Cai, J. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1126/science.1171245CrossRef
    [4]D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1039/b917103gCrossRef
    [5]L. Kou, H. K. He and C. Gao, Nano-Micro Lett. 2, 177 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.5101/nml.v2i3. p177-183
    [6]X. F. Gao, J. Jang and S. Nagase, J. Phys. Chem. C 114, 832 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/jp909284gCrossRef
    [7]M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prudhomme and I. A. Aksay, Chem. Mater. 19, 4396 (2007). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/cm0630800CrossRef
    [8]Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, ACS Nano 4, 1227 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/nn901689kCrossRef
    [9]W. F. Chen and L. F. Yan, Nanoscale 2, 559 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1039/b9nr00191cCrossRef
    [10]S. Gilje, S. Dubin, A. Badakhshan, J. Farrar, S. A. Danczyk and R. B. Kaner, Adv. Mater. 22, 419 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1002/adma.200901902CrossRef
    [11]L. J. Cote, R. Cruz-Silva and J. X. Huang, J. Am. Chem. Soc. 131, 11027 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/ja902348kCrossRef
    [12]Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun and F. S. Xiao, NanoToday 5, 15 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1016/j.nantod.2009.12.009CrossRef
    [13]Y. Zhou, Q. L. Bao, L. A. L. Tang, Y. L. Zhong and K. P. Loh, Chem. Mater. 21, 2950 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/cm9006603CrossRef
    [14]C. Nethravathi and M. Rajamathi, Carbon 46, 1994 (2008). http://鈥媎x.鈥媎oi.鈥媜rg /10.1016/j.carbon.2008.08.013CrossRef
    [15]K. B. Yin, Y. D. Xia, C. Y. Chan, W. Q. Zhang, Q. J. Wang, X. N. Zhao, A. D. Li, Z. G. Liu, M. W. Bayes and K. W. Yee, Scripta Mater. 58, 65 (2008). http://鈥媎x.鈥媎oi.鈥媜rg /10.1016/j.scriptamat.2007.08.028CrossRef
    [16]I. Jung, D. A. Field, N. J. Clark, Y. W. Zhu, D. X. Yang, R. D. Piner, S. Stankovich, D. A. Dikin, H. K. Geisler, C. A. Ventrice Jr and R. S. Ruoff, J. Phys. Chem. C 113, 18480 (2009). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/jp904396jCrossRef
    [17]S. Deguchi, S. K. Ghosh, R. G. Alargova and K. Tsujii, J. Phys. Chem. B 110, 18358 (2006). http://鈥媎x.鈥媎oi.鈥媜rg /10.1021/jp062045dCrossRef
    [18]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla and V. B. Shenoy, Nat. Chem. 2, 581 (2010). http://鈥媎x.鈥媎oi.鈥媜rg /10.1038/nchem.686CrossRef
  • 作者单位:Kuibo Yin (19)
    Haitao Li (29)
    Yidong Xia (29)
    Hengchang Bi (19)
    Jun Sun (19)
    Zhiguo Liu (29)
    Litao Sun (19)

    19. SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
    29. Department of Materials Science and Engineering, National Lab of Solid State Microstructure, Nanjing University, Nanjing, 210093, P. R. China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
The thermodynamic state and kinetic process of low-temperature deoxygenation reaction of graphene oxide (GO) have been investigated for better understanding on the reduction mechanism by using Differential Scanning Calorimetry (DSC), Thermogravimetry-Mass Spectrometry (TG-MS), and X-ray Photo-electron Spectroscopy (XPS). It is found that the thermal reduction reaction of GO is exothermic with degassing of CO2, CO and H2O. Graphene is thermodynamically more stable than GO. The deoxygenation reaction of GO is kinetically controlled and the activation energy for GO is calculated to be 167kJ/mol (1.73 eV/atom). Keywords Graphene oxide Activation energy Thermal deoxygenation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700