用户名: 密码: 验证码:
Facile synthesis of polyaniline/NiCo2O4 nanocomposites with enhanced electrochemical properties for supercapacitors
详细信息    查看全文
  • 作者:Hui Xu ; Jun-Xia Wu ; Yong Chen ; Jun-Long Zhang ; Bao-Qian Zhang
  • 关键词:PANI/NiCo2O4 ; Nanocomposites ; Supercapacitor ; Specific capacitance
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:21
  • 期:9
  • 页码:2615-2622
  • 全文大小:1,023 KB
  • 参考文献:1.Zheng Z, Huang L, Zhou Y, Hu XW, Ni XM (2009) Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance. Solid State Sci 11:1439-443CrossRef
    2.Ma J, Liu TF, Hu ZH, Xu ZJ (2013) Electrochemical synthesis and performance of PANI electrode material for electrochemical capacitor. Ionics 19:1405-413CrossRef
    3.You Z, Shen K, Wu ZC, Wang XF, Kong XH (2012) Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors. Appl Surf Sci 258:8117-123CrossRef
    4.Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sour 157:11-7CrossRef
    5.Wei JY, Zhang JA, Liu Y, Xu GH, Chen ZM, Xu Q (2013) Controlled growth of whisker-like polyaniline on carbon nanofibers and their long cycle life for supercapacitors. RSC Adv 3:3957-962CrossRef
    6.Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sour 103:305-09CrossRef
    7.Xing SX, Zhao C, Jing SY, Wang ZH (2006) Morphology and conductivity of polyaniline nanofibers prepared by ‘seeding-polymerization. Polymer 47:2305-313CrossRef
    8.Xiong W, Gao YS, Wu X, Hu X, Lan DN, Chen YY, Pu XL, Zeng Y, Su J, Zhu ZH (2014) Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl Mater Interfaces 6:19416-9423CrossRef
    9.Wei JT, Xing GZ, Gao L, Suo H, He XP, Zhao C, Li SA, Xing SX (2013) Nickel foam based polypyrrole-Ag composite film: a new route toward stable electrodes for supercapacitors. New J Chem 37:337-41CrossRef
    10.Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578-80CrossRef
    11.Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539-41CrossRef
    12.Bélanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923-929CrossRef
    13.Sariciftci NS, Bartonek M, Kuzmany H, Neugebauer H, Neckel A (1989) Analysis of various doping mechanisms in polyaniline by optical, FTIR and Raman spectroscopy. Synth Met 29:193-02CrossRef
    14.Reiss H (1989) Note on the theory of the protonic acid doping of polyaniline. Synth Met 30:257-63CrossRef
    15.Javadi HH, Cromack KR, MacDiarmid AG, Epstein AJ (1989) Microwave transport in the emeraldine form of polyaniline. Phys Rev B 39:3579-584CrossRef
    16.Wang YG, Joo J, Hsu CH, Epstein AJ (1995) Charge transport of camphor sulfonic acid-doped polyaniline and poly (o–toluidine) fibers: role of processing. Synth Met 68:207-11CrossRef
    17.Ferchichi K, Hbaieb S, Amdouni N, Pralong V, Chevalier Y (2013) Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion. J Solid State Electrochem 17:1435-447CrossRef
    18.Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sour 153:413-18CrossRef
    19.Subramania A, Devi SL (2008) Polyaniline nanofibers by surfactant-assisted dilute polymerization for supercapacitor applications. Polym Adv Technol 19:725-27CrossRef
    20.Liu JL, Zhou MQ, Fan LZ, Li P, Qu XH (2010) Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim Acta 55:5819-822CrossRef
    21.Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619-623CrossRef
    22.Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc 111:4139-141CrossRef
    23.Huo YQ, Zhang HY, Jiang JY, Yang Y (2012) A three-dimensional nanostructured PANI/MnOx porous microsphere and its capacitive performance. J Mater Sci 47:7026-034CrossRef
    24.Pandiselvi K, Thambidurai S (2014) Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics 20:551-61CrossRef
    25.Li X, Gan W, Zheng F, Li L, Zhu N, Huang X (2012) Preparation and electrochemical properties of RuO2/polyaniline electrodes for supercapacitors. Synth Met 162:953-57CrossRef
    26.Lu XJ, Dou H, Yang SD, Hao L, Zhang LJ, Shen LF, Zhang F (2011) Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim Acta 56:9224-232CrossRef
    27.Zhang LY, Zhang SL, Zhang KJ, Xu GJ, He X, Dong SM, Liu ZH, Huang CS, Gu L, Cui GL (2013) Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li–O2 batteries. Chem Com
  • 作者单位:Hui Xu (1)
    Jun-Xia Wu (1)
    Yong Chen (1)
    Jun-Long Zhang (1)
    Bao-Qian Zhang (1)

    1. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
Polyaniline/NiCo2O4 nanocomposites (PANI/NiCo2O4) with different amounts of NiCo2O4 (5, 8, 10, 15, and 20 wt%) were prepared via in situ chemical oxidation polymerization in the presence of the NiCo2O4 particles, while the NiCo2O4 nanoparticles were synthesized by a modified sol–gel method. The structure and morphology of PANI/NiCo2O4 nanocomposites were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques, respectively. The electrochemical properties of PANI/NiCo2O4 nanocomposites were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy (EIS) in 0.5 mol L? H2SO4 electrolyte in three-electrode system. The PANI/10 wt% NiCo2O4 nanocomposites show larger specific capacitance of 439.4 F g? at a current density of 5 mA cm? and lower resistance compared with the pure PANI. The charge–discharge tests showed that the PANI/NiCo2O4 nanocomposites possessed good cycling stability. It maintained about 66.11 % of the initial capacitance after 1000 cycles at a current density of 5 mA cm?. The results indicated that the PANI/NiCo2O4 nanocomposites are a promising material for supercapacitors. Keywords PANI/NiCo2O4 Nanocomposites Supercapacitor Specific capacitance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700