用户名: 密码: 验证码:
Improved Device Performance of Polymer-CuInS2/TiO2 Solar Cells Based on Treated CuInS2 Quantum Dots
详细信息    查看全文
  • 作者:Wenjin Yue ; Zhongwen Xie ; Yuwen Pan ; Guoqiang Zhang…
  • 关键词:CuInS2 ; surface treatment ; polymer ; based solar cells ; energy transfer
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:44
  • 期:10
  • 页码:3294-3301
  • 全文大小:1,263 KB
  • 参考文献:1.R.M. Swanson, Science 324, 891 (2009).CrossRef
    2.B.R. Saunders and M.L. Turner, Adv. Colloid Interface Sci. 138, 1 (2008).CrossRef
    3.H.W. Hillhouse and M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245 (2009).CrossRef
    4.M. Skompska, Synth. Met. 160, 1 (2010).CrossRef
    5.S. Ebrahim, M. Soliman, and T.M. Abdel-Fattah, J. Electron. Mater. 40, 2033 (2011).CrossRef
    6.X.C.C. Burda, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).CrossRef
    7.Y.W. Jun, J.S. Choi, and J. Cheon, Angew. Chem. Int. Ed. 45, 3414 (2006).CrossRef
    8.K.M. Coakley and M.D. McGehee, Chem. Mater. 16, 4533 (2004).CrossRef
    9.Y. Zhou, M. Eck, and M. Kr眉ger, Energy Environ. Sci. 3, 1851 (2010).CrossRef
    10.T. Xu and Q. Qiao, Energy Environ. Sci. 4, 2700 (2011).CrossRef
    11.A.J. Moul茅, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, J. Mater. Chem. 22, 2351 (2012).CrossRef
    12.J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23, 1810 (2011).CrossRef
    13.Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto, Chem. Mater. 18, 5080 (2006).CrossRef
    14.C.Y. Kuo, W.C. Tang, C. Gau, T.F. Guo, and D.Z. Jeng, Appl. Phys. Lett. 93, 033307 (2008).CrossRef
    15.S.S. Williams, M.J. Hampton, V. Gowrishankar, I.-K. Ding, J.L. Templeton, E.T. Samulski, J.M. DeSimone, and M.D. McGehee, Chem. Mater. 20, 5229 (2008).CrossRef
    16.C. Winder and N.S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).CrossRef
    17.E. Bundgaard and F. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).CrossRef
    18.Y. Li, Acc. Chem. Res. 45, 723 (2012).CrossRef
    19.W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).CrossRef
    20.D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, and M. Gerhold, Appl. Phys. Lett. 88, 183111 (2006).CrossRef
    21.S. G眉nes, K.P. Fritz, H. Neugebauer, N.S. Sariciftci, S. Kumar, and G.D. Scholes, Sol. Energy Mater. Sol. Cells 91, 420 (2007).CrossRef
    22.D. Verma and A. Ranga, Sol. Energy Mater. Sol. Cells 93, 1482 (2009).CrossRef
    23.N.K.S. Dayal, D.C. Olson, D.S. Ginley, and G. Rumbles, Nano Lett. 10, 239 (2010).CrossRef
    24.J.N. de Freitas, I.R. Grova, L.C. Akcelrud, E. Arici, N.S. Sariciftci, and A.F. Nogueira, J. Mater. Chem. 20, 4845 (2010).CrossRef
    25.T. Ni, J. Yan, Y. Jiang, F. Zou, L. Zhang, D. Yang, J. Wei, S. Yang, and B. Zou, J. Mater. Sci. 49, 2571 (2013).CrossRef
    26.M. Nam, S. Lee, J. Park, S.-W. Kim, and K.-K. Lee, Jpn. J. Appl. Phys. 50, 06GF02 (2011).CrossRef
    27.H.J. Lewerenz, Sol. Energy Mater. Sol. Cells 83, 395 (2004).CrossRef
    28.R. Klenk, J. Klaer, R. Scheer, M.C. Lux-Steiner, I. Luck, N. Meyer, and U. R眉hle, Thin Solid Films 480鈥?81, 509 (2005).CrossRef
    29.I. Konovalov, Thin Solid Films 451鈥?52, 413 (2004).CrossRef
    30.M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, and M. Yousefi, Mater. Sci. Semicond. Process. 16, 696 (2013).CrossRef
    31.O. Amiri, M. Salavati-Niasari, M. Sabet, and D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485 (2013).CrossRef
    32.E. Arici, N.S. Sariciftci, and D. Meissner, Adv. Funct. Mater. 13, 165 (2003).CrossRef
    33.M. Piver, T. Rath, T. Grie尾er, G. Trimmel, F. Stelzer, and D. Meissner, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 1 (2006, p. 247).
    34.W. Yue, F. Wu, C. Liu, Z. Qiu, Q. Cui, H. Zhang, F. Gao, W. Shen, Q. Qiao, and M. Wang, Sol. Energy Mater. Sol. Cells 114, 43 (2013).CrossRef
    35.W. Yue, G. Zhang, S. Wang, W. Sun, M. Lan, and G. Nie, Mater. Sci. Semicond. Process. 25, 337 (2014).CrossRef
    36.W. Yue, M. Wang, and G. Nie, Sol. Energy 99, 126 (2014).CrossRef
    37.N.C. Greenham, X. Peng, and A.P. Alivisatos, Phys. Rev. B 54, 17628 (1996).CrossRef
    38.S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, and G. Rumbles, Nano Lett. 10, 239 (2010).CrossRef
    39.L. Han, D. Qin, X. Jiang, Y. Liu, L. Wang, J. Chen, and Y. Cao, Nanotechnology 17, 4736 (2006).CrossRef
    40.W. Yue, M. Lan, G. Zhang, W. Sun, S. Wang, and G. Nie, Mater. Sci. Semicond. Process. 24, 117 (2014).CrossRef
    41.X. Ren, Q. Li, Y. Xue, X. Zhai, and M. Yu, J. Colloid Interface Sci. 389, 53 (2013).CrossRef
    42.D.D. Purkayastha, B. Sarma, and C.R. Bhattacharjee, J. Lumin. 154, 36 (2014).CrossRef
    43.Y. Zhou, F.S. Riehle, Y. Yuan, H.-F. Schleiermacher, M. Niggemann, G.A. Urban, and M. Kr眉ger, Appl. Phys. Lett. 96, 013304 (2010).CrossRef
    44.Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, and H.W. Hillhouse, Nano Lett. 8, 2982 (2008).CrossRef
    45.J. Boucl茅, P. Ravirajan, and J. Nelson, J. Mater. Chem. 17, 3141 (2007).CrossRef
    46.B.C. Thompson and J.M. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).CrossRef
    47.R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, and T. Maturos, Polymer 48, 813 (2007).CrossRef
    48.I. Samuel, G. Rumbles, C. Collison, R. Friend, S. Moratti, and A. Holmes, Synth. Met. 84, 497 (1997).CrossRef
    49.W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen, Adv. Funct. Mater. 16, 1112 (2006).CrossRef
    50.Y.-Y. Lin, T.-H. Chu, C.-W. Chen, and W.-F. Su, Appl. Phys. Lett. 92, 053312 (2008).CrossRef
    51.Y.Y. Lin, T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, and C.W. Chen, J. Am. Chem. Soc. 131, 3644 (2009).CrossRef
    52.B.J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003).CrossRef
    53.J.H. Warner, A.R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, and H. Rubinsztein-Dunlop, J. Phys. Chem. B 109, 9001 (2005).CrossRef
    54.A. Moliton and J.-M. Nunzi, Polym. Int. 55, 583 (2006).CrossRef
    55.W.J. Potscavage Jr., A. Sharma, and B. Kippelen, Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758 (2009).CrossRef
  • 作者单位:Wenjin Yue (1)
    Zhongwen Xie (1)
    Yuwen Pan (1)
    Guoqiang Zhang (1)
    Songming Wang (1)
    Fei Xu (1)
    Cheng Yao (1)
    Lingling Hu (1)
    Dan Li (1)
    Xing Yang (1)
    Qinping Song (1)
    Fangzhi Huang (2)

    1. School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, 241000, People鈥檚 Republic of China
    2. School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039, People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
This paper describes a solvothermal approach to remove the organic amine ligand on the surface of CuInS2 quantum dots (QDs) and demonstrates improved device performance of ternary polymer-CuInS2/TiO2 solar cells. Surface treatment of the CuInS2 QDs was carried out using different treatment methods, agents, and reaction times. Results showed that most of the amine ligands could be removed using hexanoic acid as the treatment agent by the solvothermal method in 16 h; the treated CuInS2 QDs displayed an aggregation tendency and quenched the fluorescence of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV) more effectively. As a result, MEH-PPV-CuInS2/TiO2 solar cells based on the treated CuInS2 QDs showed much higher device performance than those containing pristine CuInS2 QDs, achieving efficiency of 2.02% under AM1.5 illumination. Keywords CuInS2 surface treatment polymer-based solar cells energy transfer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700