用户名: 密码: 验证码:
Silver vanadate nanowires: photocatalytic properties and theoretical calculations
详细信息    查看全文
  • 作者:Haifeng Shi ; Changping Zhou ; Chengliang Zhang
  • 关键词:Oxides ; Electronic structure ; Nanowires ; Visible light ; Photocatalytic oxidation
  • 刊名:Research on Chemical Intermediates
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:41
  • 期:10
  • 页码:7725-7737
  • 全文大小:1,562 KB
  • 参考文献:1.M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 6996 (1995)CrossRef
    2.A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRef
    3.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRef
    4.K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440, 295 (2006)CrossRef
    5.X.C. Wang, X.F. Chen, A. Thomas, X.Z. Fu, M. Antonietti, Adv. Mater. 21, 1 (2009)
    6.H.F. Shi, X.K. Li, H. Iwai, Z.G. Zou, J.H. Ye, J. Phys. Chem. Solids 70, 931 (2009)CrossRef
    7.N. Chen, G.Q. Li, W.F. Zhang, Phys. B 447, 12 (2014)CrossRef
    8.M. Takeuchi, H. Yamagawa, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 40, 23 (2014)CrossRef
    9.H.F. Shi, G.Q. Chen, Z.G. Zou, Appl. Catal. B Environ. 378, 156 (2014)
    10.H. Kim, D. Hwang, J. Lee, J. Am. Chem. Soc. 126, 8912 (2004)CrossRef
    11.J.G. Yu, L.F. Qi, M. Jaronie, J. Phys. Chem. C 114, 13118 (2010)CrossRef
    12.C. Lettmann, H. Hinrichs, W.F. Maier, Angew. Chem. Int. Ed. 40, 3160 (2001)CrossRef
    13.J.M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 108, 618 (1984)CrossRef
    14.N. Serpone, J. Phys. Chem. B 110, 24287 (2006)CrossRef
    15.S. Hoang, S.W. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Nano Lett. 12, 26 (2012)CrossRef
    16.Y.H. Shi, F. Chen, J.L. Zhang, Appl. Surf. Sci. 265, 912 (2013)CrossRef
    17.G. Li, N. Yang, W. Wang, W.F. Zhang, J. Phys. Chem. C 113, 14829 (2009)CrossRef
    18.Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H.S. Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. Withers, Nat. Mater. 9, 559 (2010)CrossRef
    19.H.F. Shi, X. Li, D. Wang, Y. Yuan, Z.G. Zou, J. Ye, Catal. Lett. 132, 205 (2009)CrossRef
    20.C. Belver, C. Adán, S. García-Rodríguez, M. Fernández-García, Chem. Eng. J. 224, 24 (2013)CrossRef
    21.R. Konta, H. Kato, H. Kobayashi, A. Kudo, Phys. Chem. Chem. Phys. 5, 3061 (2003)CrossRef
    22.J. Xu, C.G. Hua, Y. Xia, B.Y. Wan, C.L. Zhang, Y. Zhang, Solid State Sci. 14, 535 (2012)CrossRef
    23.L.C. Chen, G.T. Pan, T.C.K. Yang, T.W. Chung, C.M. Huang, J. Hazard. Mater. 178, 644 (2010)CrossRef
    24.A. Singh, D.P. Dutta, A. Ballal, A.K. Tyagi, M.H. Fulekar, Mater. Res. Bull. 51, 447 (2014)CrossRef
    25.D. Li, X.C. Duan, Q. Qin, H.M. Fan, W.J. Zheng, CrystEngComm 15, 8933 (2013)CrossRef
    26.X.K. Li, S.X. Ouyang, N. Kikugawa, J.H. Ye, Appl. Catal. A Gen. 334, 51 (2008)CrossRef
    27.T. Kako, N. Kikugawa, J.H. Ye, Catal. Today 131, 197 (2008)CrossRef
    28.Y. Maruyama, H. Irie, K. Hashimoto, J. Phys. Chem. B 110, 23274 (2006)CrossRef
    29.S.H. Ouyang, N. Kikugawa, D. Chen, Z.G. Zou, J.H. Ye, J. Phys. Chem. C 113, 1560 (2009)CrossRef
    30.H.F. Shi, Z.S. Li, J. Kou, J.H. Ye, Z.G. Zou, J. Phys. Chem. C 115, 145 (2011)CrossRef
    31.Q.Y. Li, T. Kako, J.H. Ye, Appl. Catal. A Gen. 375, 85 (2010)CrossRef
    32.D.F. Wang, A. Pierre, M.G. Kibria, K. Cui, X.G. Han, K.H. Bevan, H. Guo, S. Paradis, A.R. Hakima, Z.T. Mi, Nano Lett. 11, 2353 (2011)CrossRef
    33.H.F. Shi, T. Wang, J. Chen, C. Zhu, J.H. Ye, Z.G. Zou, Catal. Lett. 4, 525 (2011)CrossRef
    34.H.L. Zhou, Y.Q. Qu, T. Zeid, X.F. Duan, Energy. Environ. Sci. 5, 6732 (2012)
    35.H.F. Shi, G. Chen, C.L. Zhang, Z.G. Zou, ACS Catal. 4, 3637 (2014)CrossRef
    36.P. Ju, H. Fan, B.L. Zhang, K. Shang, T. Liu, S.Y. Ai, D. Zhang, Sep. Purif. Technol. 109, 107 (2013)CrossRef
    37.M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002)CrossRef
    38.X.Q. Zhu, J.L. Zhang, F. Chen, Appl. Catal. B Environ. 102, 316 (2011)CrossRef
    39.H.F. Shi, X.L. Huang, H.M. Tian, J. Lv, Z.S. Li, J. Ye, Z.G. Zou, J. Phys. D Appl. Phys. 42, 125402 (2009)CrossRef
    40.A.J. Cohen, P. Mori-Sánchez, W.T. Yang, Science 321, 792 (2008)CrossRef
  • 作者单位:Haifeng Shi (1) (2)
    Changping Zhou (1)
    Chengliang Zhang (1)

    1. School of Science, Jiangnan University, Wuxi, 214122, People’s Republic of China
    2. Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
Silver vanadate (β-AgVO3) nanowires were synthesized by a hydrothermal method, assisted with surfactant, and evaluated for degradation of 2-propanol under visible-light irradiation. Field-emission scanning electron microscopy (FE-SEM) revealed the β-AgVO3 nanowires were of uniform size—several micrometers long and ~20 nm in diameter. According to the diffuse reflectance spectrum of the β-AgVO3 nanowires their energy band gap was 2.2 eV, corresponding to a wide range of visible-light absorption up to 550 nm. The electronic structure of β-AgVO3 was calculated theoretically on the basis of density functional theory. The β-AgVO3 nanowires catalyst had greater photocatalytic activity than commercial N-TiO2 in the degradation of 2-propanol under visible-light irradiation. This was mainly ascribed to the narrow band gap, good crystallinity, and large surface-to-volume ratio of β-AgVO3 nanowires. Keywords Oxides Electronic structure Nanowires Visible light Photocatalytic oxidation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700