用户名: 密码: 验证码:
From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries
详细信息    查看全文
  • 作者:Dongdong Zhao ; Lei Wang ; Peng Yu ; Lu Zhao ; Chungui Tian ; Wei Zhou…
  • 关键词:porous nanosheets ; graphene ; like ; graphite ; high ; rate ; Li ; ion battery
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:9
  • 页码:2998-3010
  • 全文大小:2,776 KB
  • 参考文献:[1]Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251-269.CrossRef
    [2]Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-430.CrossRef
    [3]Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: Aperspective. J. Am. Chem. Soc. 2013, 135, 1167-176.CrossRef
    [4]Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901-906.CrossRef
    [5]Park, K. H.; Lee, D.; Kim, J.; Song, J.; Lee, Y. M.; Kim, H.-T.; Park, J. K. Defect-free, size-tunable graphene for high-performance lithium ion battery. Nano Lett. 2014, 14, 4306-313.CrossRef
    [6]Bogart, T. D.; Oka, D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Lithium ion battery performance of silicon nanowires with carbon skin. ACS Nano 2014, 8, 915-22.CrossRef
    [7]Zhang, G. Q.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow sphereswith superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 9041-044.CrossRef
    [8]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-99.CrossRef
    [9]Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Hollow porous LiMn2O4microcubes as rechargeable lithium battery cathode with high electrochemical performance. Small 2012, 8, 858-62.CrossRef
    [10]Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770-1774.CrossRef
    [11]Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126-129.CrossRef
    [12]Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404-409.CrossRef
    [13]Shi, Q. H.; Liang, H. J.; Feng, D.; Wang, J. F.; Stucky, G. D. Porous carbon and carbon/metal oxide microfibers with wellcontrolled pore structure and interface. J. Am. Chem. Soc. 2008, 130, 5034-035.CrossRef
    [14]Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-613.CrossRef
    [15]Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312-316.CrossRef
    [16]Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169-0173.CrossRef
    [17]Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q. A.; Maier, J.; Mü llen, K. Nanographene-constructed hollow carbon spheresand their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838-42.CrossRef
    [18]Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.
    [19]Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and applicationin lithium-ion batteries. Small 2013, 9, 1877-893.CrossRef
    [20]Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526-542.CrossRef
    [21]Erickson, E. M.; Ghanty, C.; Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 2014, 5, 3313-324.CrossRef
    [22]Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H. Multilayer graphynes for lithium ion battery anode. J. Phys. Chem. C2013, 117, 6919-923.
    [23]Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.; Zhu, Y. J.; Bigio, D.; Zhu, T. et al. In situtransmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445-452.CrossRef
    [24]Wu, D. Q.; Zhang, F.; Liangab, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemicallymodified graphenesheets. Chem. Soc. Rev. 2012, 41, 6160-177.CrossRef
    [25]Wu, Z.-S.; Sun, Y.; Tan, Y.-Z.; Yang, S. B.; Feng, X. L.; Müllen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532-9535.CrossRef
    [26]Shi, Y. F.; Wan, Y.; Zhao, D. Y. Ordered mesoporous nonoxide m
  • 作者单位:Dongdong Zhao (1)
    Lei Wang (1)
    Peng Yu (1)
    Lu Zhao (1)
    Chungui Tian (1)
    Wei Zhou (1)
    Lei Zhang (1)
    Honggang Fu (1)

    1. Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin, 150080, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Graphene nanosheets possess a promising potential as electrodes in Li-ion batteries (LIBs); consequently, the development of low-cost and high-productivity synthetic approaches is crucial. Herein, porous graphene-like nanosheets (PGSs) have been synthesized from expandable graphite (EG) by initially intercalating phosphoric acid, and then performing annealing to enlarge the interlayer distance of EG, thus facilitating the successive intercalation of zinc chloride. Subsequently, the following pyrolysis of zinc chloride in the EG interlayer promoted the formation of the porous PGS structure; meanwhile, the gas produced during the formation of the porous structure could exfoliate the EG to graphene-like nanosheets. The synthetic PGS material used as LIB anode exhibited superior Li+ storage performance, showing a remarkable discharge capacity of 830.4 mAh·g-1 at 100 mA·g-1, excellent rate capacity of 211.6 mAh·g-1 at 20,000 mA·g-1, and excellent cycle performance (near 100% capacity retention after 10,000 cycles). The excellent rate performance is attributed to the Li+ ion rapid transport in porous structures and the high electrical conductivity of graphene-like nanosheets. It is expected that PGS may be widely used as anode material for high-rate LIBs via this facile and low-cost route by employing EG as the raw material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700