用户名: 密码: 验证码:
Postmagmatic magnetite鈥揳patite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia
详细信息    查看全文
  • 作者:Olga B. Apukhtina ; Vadim S. Kamenetsky…
  • 关键词:IOCG deposits ; Olympic Dam ; Mafic magmatism ; Colloform magnetite ; Hydrothermal alteration ; Radiogenic isotopes
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:171
  • 期:1
  • 全文大小:6,678 KB
  • 参考文献:Barton MD (2014) Iron oxide (鈥揅u鈥揂u鈥揜EE鈥揚鈥揂g鈥揢鈥揅o) systems. Treat Geochem 13:515鈥?41CrossRef
    Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (鈥揅u鈥揂u) systems: Implications for hydrothermal alteration and metals. Hydrotherm Iron Oxide Copp Gold Relat Depos Glob Perspect 1:43鈥?0
    Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310鈥?14. doi:http://鈥媤ww.鈥媙ature.鈥媍om/鈥媙mat/鈥媕ournal/鈥媣12/鈥媙4/鈥媋bs/鈥媙mat3558.鈥媓tml#supplementary-information
    Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72(6):1101鈥?130CrossRef
    Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55(1鈥?):139鈥?58. doi:10.鈥?016/鈥婼0024-4937(00)00043-8 CrossRef
    Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe鈥揟i鈥揤鈥揚 ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56鈥?1. doi:10.鈥?016/鈥媕.鈥媏arscirev.鈥?014.鈥?1.鈥?05 CrossRef
    Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9(14):1736鈥?750. doi:10.鈥?039/鈥媌618790k CrossRef
    Chukhrov FV (1966) Present views on colloids in ore formation. Int Geol Rev 8(3):336鈥?45. doi:10.鈥?080/鈥?020681660947429鈥? CrossRef
    Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu鈥揢鈥揂u deposit, South Australia: a geochemical tracer and reconnaissance Pb鈥揚b geochronometer. Precambrian Res 238:129鈥?47. doi:10.鈥?016/鈥媕.鈥媝recamres.鈥?013.鈥?0.鈥?07 CrossRef
    Creaser RA, Gray CM (1992) Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: a case study from the Middle Proterozoic of South Australia. Geochim Cosmochim Acta 56(7):2789鈥?795. doi:10.鈥?016/鈥?016-7037(92)90359-Q CrossRef
    Dare SS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite 鈥渓ava flows鈥?of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner Depos 50(5):607鈥?17. doi:10.鈥?007/鈥媠00126-014-0560-1 CrossRef
    Dumanska-S艂owik M, Natkaniec-Nowak L, Wese艂ucha-Birczynska A, Gawe艂 A, Lankosz M, Wr贸bel P (2013) Agates from Morocco: gemological characteristics and proposed origin. Gems Gemol 49(3)
    Dymkin AM, Sokolov GA (1961) Colloform seggregations of endogenous magnetite in the Kurzhunkul deposit. Geol Geofiz 1:77鈥?5
    Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu鈥揢鈥揂u鈥揂g deposit, South Australia. In: Hedenquist JW et al. (eds) Economic Geology Special Publication, vol 16, pp 237鈥?67
    G枚tze J (2002) Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374(4):703鈥?08. doi:10.鈥?007/鈥媠00216-002-1461-1 CrossRef
    Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper鈥揼old (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105(3):641鈥?54. doi:10.鈥?113/鈥媑secongeo.鈥?05.鈥?.鈥?41 CrossRef
    Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner Depos 36(8):799鈥?06. doi:10.鈥?007/鈥媠001260100209 CrossRef
    Hauck SA (1990) Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits: an ore deposit model for Olympic Dam-type mineralization. US Geol Surv Bull 1932:4鈥?9
    Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu鈥揢鈥揂u鈥揜EE) deposits. Precambrian Res 58(1):241鈥?87CrossRef
    Huang Q-Y, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Apukhtina O, Kamenetsky M, Chambefort I, Hu Y, Ling M (2015) Neoproterozoic (820 Ma) mafic dykes at Olympic Dam, South Australia: links with the Gairdner Large Igneous Province. Precambrian Research
    Jagodzinski EA (2014) The age of magmatic and hydrothermal zircon at Olympic Dam. In: AESC-Abstract-Proceedings Newcastle
    Johnson JP, McCulloch MT (1995) Sources of mineralising fluids for the Olympic Dam Deposit (South Australia)鈥擲m鈥揘d isotopic constraints. Chem Geol 121(1鈥?):177鈥?99CrossRef
    Jonsson E, Troll VR, H枚gdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant 鈥楰iruna-type鈥?apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644. doi:10.鈥?038/鈥媠rep01644 CrossRef
    Karathanasis AD (1999) Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci Soc Am J 63(4):830鈥?38. doi:10.鈥?136/鈥媠ssaj1999.鈥?34830x CrossRef
    Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology. doi:10.鈥?130/鈥媑36650.鈥?
    Maas R, Apukhtina OB, Kamenetsky VS, Ehrig K (2015) Olympic Dam Cu鈥揢鈥揂u deposit: 87Sr/86Sr in carbonate gangue documents long formation history. In: Proceedings Goldschmidt 2015, Prague:1957
    McPhie J, Kamenetsky VS, Chambefort I, Ehrig K, Green N (2011) Origin of the supergiant Olympic Dam Cu鈥揢鈥揂u鈥揂g deposit, South Australia: Was a sedimentary basin involved? Geology 39(8):795鈥?98. doi:10.鈥?130/鈥媑31952.鈥? CrossRef
    Menard T, Lesher CM, Stowell HH, Price DP, Pickell JR, Onstott TC, Hulbert L (1996) Geology, genesis, and metamorphic history of the Namew Lake Ni鈥揅u deposit, Manitoba. Econ Geol 91(8):1394鈥?413. doi:10.鈥?113/鈥媑secongeo.鈥?1.鈥?.鈥?394 CrossRef
    Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147CrossRef
    Molchan IS, Thompson GE, Lindsay R, Skeldon P, Likodimos V, Romanos GE, Falaras P, Adamova G, Iliev B, Schubert TJS (2014) Corrosion behaviour of mild steel in 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids for CO2 capture applications. RSC Adv 4(11):5300鈥?311. doi:10.鈥?039/鈥媍3ra45872e CrossRef
    Nystroem JO, Henriquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89(4):820鈥?39. doi:10.鈥?113/鈥媑secongeo.鈥?9.鈥?.鈥?20 CrossRef
    Parak T (1975) Kiruna iron ores are not 鈥渋ntrusive-magmatic ores of the Kiruna type鈥? Econ Geol 70(7):1242鈥?258. doi:10.鈥?113/鈥媑secongeo.鈥?0.鈥?.鈥?242 CrossRef
    Parak T (1984) On the magmatic origin of iron ores of the Kiruna type; discussion. Econ Geol 79(8):1945鈥?949. doi:10.鈥?113/鈥媑secongeo.鈥?9.鈥?.鈥?945 CrossRef
    Pavlov NV (1961) Magnetite deposits of the Tungusska tectonic Depression on the SIberian Platform. Tr IGEM Akad Nauk SSSR 52
    Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper鈥搖ranium鈥揼old鈥搒ilver deposit. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol Monograph 14. Australasian Institute of Mining and Metallurgy, Melbourne, pp 1009鈥?035
    Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems: evidence from the Sleeper deposit, Nevada. Geology 18(8):757鈥?60. doi:10.鈥?130/鈥?091-7613(1990)018<0757:鈥媍togas>2.鈥?.鈥媍o;2 CrossRef
    Saunders JA (1994) Silica and gold textures in bonanza ores of the Sleeper Deposit, Humboldt County, Nevada; evidence for colloids and implications for epithermal ore-forming processes. Econ Geol 89(3):628鈥?38. doi:10.鈥?113/鈥媑secongeo.鈥?9.鈥?.鈥?28 CrossRef
    Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174(2):424鈥?30. doi:10.鈥?016/鈥婼0022-4596(03)00294-9 CrossRef
    Sillitoe RH (2003) Iron oxide-copper鈥揼old deposits: an Andean view. Miner Depos 38(7):787鈥?12. doi:10.鈥?007/鈥媠00126-003-0379-7 CrossRef
    Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Econ Geol 97(5):1101鈥?109. doi:10.鈥?113/鈥媑secongeo.鈥?7.鈥?.鈥?101
    Song X-Y, Qi H-W, Hu R-Z, Chen L-M, Yu S-Y, Zhang J-F (2013) Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from the Panzhihua intrusion, SW China. Geochem Geophys Geosyst 14(3):712鈥?32. doi:10.鈥?002/鈥媑gge.鈥?0068 CrossRef
    Stevenson JS, Jeffery WG (1964) Colloform magnetite in a contact metasomatic iron deposit, Vancouver Island, British Columbia. Econ Geol 59(7):1298鈥?305. doi:10.鈥?113/鈥媑secongeo.鈥?9.鈥?.鈥?298 CrossRef
    Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313鈥?45. doi:10.鈥?144/鈥媑sl.鈥媠p.鈥?989.鈥?42.鈥?1.鈥?9 CrossRef
    Treloar PJ, Colley H (1996) Variations in F and Cl contents in apatites from magnetite鈥揳patite ores in northern Chile, and their ore-genetic implications. Miner Mag 60(399):285鈥?02CrossRef
    Watson T, Taber S (1910) Nelsonite, a new rock type; its occurrence, association, and composition. Geol Soc Am Bull 21:787
    Wawryk C (1989) Strontium and rare earth element geochemistry of barite-fluorite mineralization at Olympic Dam, South Australia. B.Sc thesis, unpublished
    Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24(12):1059鈥?062. doi:10.鈥?130/鈥?091-7613(1996)024<1059:鈥媠fanmf>2.鈥?.鈥媍o;2 CrossRef
    Williams PJ, Barton MD, Johnson DA, Fontbot茅 L, De Haller A, Mark G, Oliver NH, Marschik R (2005) Iron oxide copper鈥揼old deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary volume, Society of Economic Geologists, Denver, pp. 371鈥?05
    Williamson BJ, Wilkinson JJ, Luckham PF, Stanley CJ (2002) Formation of coagulated colloidal silica in high-temperature mineralizing fluids. Miner Mag 66(4):547鈥?53. doi:10.鈥?180/鈥?026461026640048鈥?/span> CrossRef
    Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32(2):105鈥?08. doi:10.鈥?130/鈥媑20171.鈥? CrossRef
    Zhao J, McCulloch MT (1993) Sm鈥揘d mineral isochron ages of Late Proterozoic dyke swarms in Australia: evidence for two distinctive events of mafic magmatism and crustal extension. Chem Geol 109(1鈥?):341鈥?54. doi:10.鈥?016/鈥?009-2541(93)90079-x CrossRef
  • 作者单位:Olga B. Apukhtina (1)
    Vadim S. Kamenetsky (1)
    Kathy Ehrig (2)
    Maya B. Kamenetsky (1)
    Jocelyn McPhie (1)
    Roland Maas (3)
    Sebastien Meffre (1)
    Karsten Goemann (4)
    Thomas Rodemann (4)
    Nigel J. Cook (5)
    Cristiana L. Ciobanu (5)

    1. School of Physical Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
    2. BHP Billiton Olympic Dam, Adelaide, SA, 5000, Australia
    3. School of Earth Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
    4. Central Science Laboratory, University of Tasmania, Hobart, TAS, 7001, Australia
    5. School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0967
文摘
An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper鈥揼old (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite鈥揳patite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite鈥揳patite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite鈥搃lmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite鈥揳patite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite鈥揳patite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks. Keywords IOCG deposits Olympic Dam Mafic magmatism Colloform magnetite Hydrothermal alteration Radiogenic isotopes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700