用户名: 密码: 验证码:
Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy
详细信息    查看全文
  • 作者:Zhao Liu ; Wenhan Li ; Yongsheng Zhang…
  • 关键词:Biomass ; Coal ; Co ; combustion ; Optimum combustion ratio ; TG–FTIR
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:122
  • 期:3
  • 页码:1289-1298
  • 全文大小:606 KB
  • 参考文献:1.Blasi CD. Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci. 2009;35(2):121-0.CrossRef
    2.Arvelakis S, Moutsatsou A, Sotiriou C, et al. Prediction of the behaviour of biomass ash in fluidized bed combustors and gasifiers. J Therm Anal Calorim. 1999;56(3):1271-.CrossRef
    3.Yu LJ, Wang S, Jiang XM, et al. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611-.CrossRef
    4.Dumanli AG, Ta S, Yürüm Y. Co-firing of biomass with coals. J Therm Anal Calorim. 2011;103(3):925-3.CrossRef
    5.Wang X, Si J, Tan H, et al. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw. Energy Fuels. 2010;24(9):5215-1.CrossRef
    6.Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel. 2006;85(9):1186-3.CrossRef
    7.Gil MV, Casal D, Pevida C, et al. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101(14):5601-.CrossRef
    8.Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;87(1):141-.CrossRef
    9.Sahu SG, Sarkar P, Chakraborty N, et al. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010;91(3):369-8.CrossRef
    10.Tillman DA. Cofiring benefits for coal and biomass. Biomass Bioenergy. 2000;19(6):363-.CrossRef
    11.Zhang KH, Zhang K, Cao Y, Pan WP. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresour Technol. 2013;131(3):325-2.CrossRef
    12.Arias B, Pevida C, Rubiera F, et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel. 2008;87(12):2753-.CrossRef
    13.Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114(2):519-9.CrossRef
    14.Vamvuka D, Karouki E, Sfakiotakis S. Gasification of waste biomass chars by carbon dioxide via thermogravimetry. Fuel. 2011;90:1120-.CrossRef
    15.Skreiberg A, Skreberg O, Sandquist J, Sorum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90:2189-7.CrossRef
    16.Stenseng M, Zolin A, Cenni R, Frandsen F, Jensen A, Dam-Johansen K. Thermal analysis in combustion research. J Therm Anal Calorim. 2001;64:1325-4.CrossRef
    17.Calvo LF, Sanchez ME, Moran A, Garcia AI. TG–MS a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge. J Therm Anal Calorim. 2004;78:587-8.CrossRef
    18.Villanueva M, Proupin J, Rodrigez-A?ón JA, Fraga-Grueiro L, Salgado J, Barros N. Energetic characterization of forest biomass by calorimetry and thermal analysis. J Therm Anal Calorim. 2011;104:61-.CrossRef
    19.Zhai Y, Peng W, Zeng G, Fu Z, Lan Y, Chen H, Wang C, Fan X. Pyrolysis characteristics and kinetic of sewage sludge for different size and heating rates. J Therm Anal Calorim. 2012;107:1015-2.CrossRef
    20.Sebestyén Z, Lezsovits F, Jakab E, Várhegyi G. Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. J Therm Anal Calorim. 2012;110:1501-.CrossRef
    21.Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis. Bioresour Technol. 2011;102:6230-.CrossRef
    22.Grotkj?r T, Dam-Johansen K, Jensen AD, Glarborg P. An experimental study of biomass ignition. Fuel. 2003;82:825-3.CrossRef
    23.Cheng H, Yang J, Frost RL, Wu Z. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites. Spectrochim Acta A Mol Biomol Spectrosc. 2011;83:518-4.CrossRef
    24.Hansson KM, Samuelsson J, Tullin C, ?mand LE. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame. 2004;137:265-7.CrossRef
    25.Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochim Acta. 2011;526:192-.CrossRef
    26.Jeguirim M, Dorge S, Trouvé G. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour Technol. 2010;101:788-3.CrossRef
    27.Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon JK, Park YK. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol. 2014;101:3672-.CrossRef
    28.Jiang X, Li C, Chi Y, Yan J. TG–FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater. 2010;173:205-0.CrossRef
    29.Riaza J, Khatam
  • 作者单位:Zhao Liu (1)
    Wenhan Li (1)
    Yongsheng Zhang (1)
    Jiawei Wang (1)
    William Orndorff (2)
    Wei-Ping Pan (1) (2)

    1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Beijing, 102206, People’s Republic of China
    2. Institute of Combustion Science and Environmental Technology, Western Kentucky University, Bowling Green, KY, 42101, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The blending of coal with biomass can lead to synergistic combustion behaviors. The combustion profile of two biomass sources, two coals and subsequent blends was studied using thermogravimetric analysis (TG). Ignition and burnout performances were identified and calculated from thermal curves. The comprehensive combustion performance index S was calculated from the thermogravimetric curves. CO2 and CO concentrations were also studied via on-line analysis of TG–Fourier transform infrared spectroscopy. The results indicated that complicated chemical processes took place when coal was combusted with biomass, as compared with coal or biomass only. The lower ignition temperatures and higher volatility of biomass significantly improve the combustion behavior of coal. However, when biomass content in the blends exceeded 10 %, ignition and burnout performances were minimally affected. The combustion index S appears to give a more comprehensive description of the combustion process. The results from CO/CO2 ratio also support the combustion behavior for the blending of coal and biomass. For this study, the addition of 10 % of biomass would be the optimum recommended combustion ratios for coal and biomass blends. Keywords Biomass Coal Co-combustion Optimum combustion ratio TG–FTIR

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700