用户名: 密码: 验证码:
Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction
详细信息    查看全文
  • 作者:Kabindra Kafle ; Christopher M. Lee ; Heenae Shin ; Justin Zoppe
  • 关键词:Biomass ; Crystalline cellulose ; Delignification ; Sum frequency generation spectroscopy ; X ; ray diffraction
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1750-1758
  • 全文大小:1,192 KB
  • 参考文献:1.Ahlgren P, Goring D (1971) Removal of wood components during chlorite delignification of black spruce. Can J Chem 49(8):1272-275CrossRef
    2.Atalla R, Crowley M, Himmel M, Atalla R (2014) Irreversible transformations of native celluloses, upon exposure to elevated temperatures. Carbohydr Polym 100:2-CrossRef PubMed
    3.Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434-439CrossRef PubMed
    4.Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802-09CrossRef PubMed
    5.Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759-61CrossRef PubMed
    6.Chundawat SP, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):973-84CrossRef
    7.De Souza I, Bouchard J, Methot M, Berry R, Argyropoulos D (2002) Carbohydrates in oxygen delignification. Part I: changes in cellulose crystallinity. J Pulp Paper Sci 28(5):167-70
    8.Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913-25CrossRef PubMed
    9.Driemeier C, Pimenta MT, Rocha GJ, Oliveira MM, Mello DB, Maziero P, Gon?alves AR (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18(6):1509-519CrossRef
    10.Faix O (1992) Fourier transform infrared spectroscopy. In: Lin S, Dence C (eds) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer Series in Wood Science. Springer, Berlin, Heidelberg, pp 83-09
    11.Fengel D, Wegener G. 1983. Wood: chemistry, ultrastructure, reactions: De Gruyter, New York
    12.Gellerstedt G, Zhang L (2001) Chemistry of TCF-bleaching with oxygen and hydrogen peroxide. In: Argyropoulos DS (ed) Oxidative Delignification Chemistry, vol 785. ACS Symposium Series. American Chemical Society, Washington, DC, pp 61-2
    13.Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289-12
    14.Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, Kim SH, Baskin TI, Hazen SP (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13(1):131PubMedCentral CrossRef PubMed
    15.Hubbell CA, Ragauskas AJ (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101(19):7410-415CrossRef PubMed
    16.Irvine G (1985) The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol 19(2):139-49CrossRef
    17.Kafle K, Greeson K, Lee C, Kim SH (2014) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84(16):1692-699. doi:10.-177/-040517514527379-/span>
    18.Kafle K, Shi R, Lee CM, Mittal A, Park YB, Sun Y-H, Park S, Chiang V, Kim SH (2014) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21(4):2219-231CrossRef
    19.Kafle K, Xi X, Lee C, Tittmann B, Cosgrove D, Park Y, Kim S (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075-086CrossRef
    20.Kahar P (2013) Synergistic effects of pretreatment process on enzymatic digestion of rice straw for efficient ethanol fermentation. In: Petre M (ed) Environmental Biotechnology - New Approaches and Prospective Applications. InTech, Croatia, pp 65-7
    21.Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30(12):2127-141CrossRef
    22.Kim SH, Lee CM, Kafle K, Park YB, Xi X (2013) Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass. In: Liu Z (ed) Proc. SPIE vol 8845, pp 884501-84508
    23.Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544-557CrossRef PubMed
    24.LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations i
  • 作者单位:Kabindra Kafle (1)
    Christopher M. Lee (1)
    Heenae Shin (2) (4)
    Justin Zoppe (2)
    David K. Johnson (3)
    Seong H. Kim (1)
    Sunkyu Park (2) (4)

    1. Department of Chemical Engineering and Material Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
    2. Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
    4. Department of Forest Sciences, Seoul National University, Seoul, South Korea
    3. Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Delignification, a common practice in the pulping industry, has been proposed and explored as a means to selectively remove lignin from lignocellulosic biomass and, thus, increase enzyme accessibility for cellulose hydrolysis. However, without knowing structural changes of cellulose in biomass, it is difficult to fully understand the effects of the delignification process on cellulose hydrolysis. In this study, the amount and aggregation of crystalline cellulose in hardwood biomass delignified using oxygen and sodium chlorite as reactive agents were examined with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD). The results indicated that the amount of crystalline cellulose and the XRD crystallite size increased with both oxygen and chlorite delignification processes. In addition, the “οcellulose equivalent-fraction estimated by SFG spectroscopy increased greater than glucan amount with the delignification process. Changes in crystal size might be due to the aggregation of cellulose crystals, along with the increase in crystalline cellulose amount. Keywords Biomass Crystalline cellulose Delignification Sum frequency generation spectroscopy X-ray diffraction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700