用户名: 密码: 验证码:
Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit
详细信息    查看全文
  • 作者:Jianjun Luo ; Feng Ru Fan ; Tao Jiang ; Zhiwei Wang ; Wei Tang ; Cuiping Zhang…
  • 关键词:energy harvesting ; energy storage ; triboelectric nanogenerator (TENG) ; micro ; supercapacitor ; self ; charging
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:12
  • 页码:3934-3943
  • 全文大小:2,297 KB
  • 参考文献:[1]Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859鈥?64.CrossRef
    [2]Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K.-Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222鈥?26.CrossRef
    [3]Ilievski, F.; Mazzeo, A. D.; Shepherd, R. E.; Chen, X.; Whitesides, G. M. Soft robotics for chemists. Angew. Chem., Int. Ed. 2011, 50, 1890鈥?895.CrossRef
    [4]Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839鈥?846.CrossRef
    [5]Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.CrossRef
    [6]Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 2011, 4, 3359鈥?363.CrossRef
    [7]Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795鈥?01.CrossRef
    [8]Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242鈥?46.CrossRef
    [9]Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102鈥?05.CrossRef
    [10]Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L. Hybridizing energy conversion and storage in a mechanicalto-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048鈥?054.CrossRef
    [11]Xue, X. Y.; Deng, P.; He, B.; Nie, Y. X.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater. 2014, 4, 1301329.CrossRef
    [12]Xing, L. L.; Nie, Y. X.; Xue, X. Y.; Zhang, Y. PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 2014, 10, 44鈥?2.CrossRef
    [13]Ramadoss, A.; Saravanakumar, B.; Lee, S. W.; Kim, Y. S.; Kim, S. J.; Wang, Z. L. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 2015, 9, 4337鈥?345.CrossRef
    [14]Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328鈥?34.CrossRef
    [15]Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533鈥?557.CrossRef
    [16]Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219鈥?3225.CrossRef
    [17]Grzybowski, B. A.; Winkleman, A.; Wiles, J. A.; Brumer, Y.; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2003, 2, 241鈥?45.CrossRef
    [18]Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960鈥?965.CrossRef
    [19]Wang, S. H.; Lin, Z. H.; Niu, S. M.; Lin, L.; Xie, Y. N.; Pradel, K. C.; Wang, Z. L. Motion charged battery as sustainable flexible-power-unit. ACS Nano 2013, 7, 11263鈥?1271.CrossRef
    [20]Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for microsupercapacitors. Science 2010, 328, 480鈥?83.CrossRef
    [21]Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496鈥?00.CrossRef
    [22]El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.CrossRef
    [23]Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537鈥?541.CrossRef
    [24]Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.CrossRef
    [25]Peng, Z. W.; Lin, J.; Ye, R. Q.; Samuel, E. L. G.; Tour, J. M. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414鈥?419.CrossRef
    [26]Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788鈥?796.CrossRef
    [27]Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectriceffect- enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339鈥?346.CrossRef
    [28]Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.
    [29]Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K. S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. J. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918鈥?925.CrossRef
    [30]Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436鈥?62.CrossRef
    [31]Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651鈥?54.CrossRef
    [32]Wu, Z. S.; Parvez, K.; Feng, X. L.; M眉llen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.
    [33]Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.
    [34]Lin, L.; Xie, Y. N.; Wang, S. H.; Wu, W. Z.; Niu, S. M.; Wen, X. N.; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266鈥?274.CrossRef
    [35]Luo, J. J.; Fan, F. R.; Zhou, T.; Tang, W.; Xue, F.; Wang, Z. L. Ultrasensitive self-powered pressure sensing system. Extreme Mech. Lett. 2015, 2, 28鈥?6.CrossRef
  • 作者单位:Jianjun Luo (1)
    Feng Ru Fan (1) (2)
    Tao Jiang (1)
    Zhiwei Wang (1)
    Wei Tang (1)
    Cuiping Zhang (1)
    Mengmeng Liu (1)
    Guozhong Cao (1) (3)
    Zhong Lin Wang (1) (4)

    1. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
    2. Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
    3. Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195, USA
    4. School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. Herein, we propose a simple and cost-effective laser engraving technique for fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient mechanical motion. We demonstrate the ability of the SCMPU to continuously power light-emitting diodes and a commercial hygrothermograph. This investigation may promote the development of sustainable self-powered systems and provide a promising new research application for supercapacitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700