用户名: 密码: 验证码:
Dissimilarity of phytoplankton assemblages in two connected tropical reservoirs: effects of water transportation and environmental filtering
详细信息    查看全文
  • 作者:Li-Juan Xiao ; Ren Hu ; Liang Peng ; La-Mei Lei ; Yu Feng ; Bo-Ping Han
  • 关键词:Succession ; Dissimilarity ; Dispersal ; Environmental filter ; Water transportation
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:764
  • 期:1
  • 页码:127-138
  • 全文大小:1,189 KB
  • 参考文献:Association, American Public Health, 1989. Standard Methods for the Examination of Water and Wastewater. American Water Works Association and Water Pollution Control Federation, Washington, DC.
    Avnimelech, Y., B. W. Troeger & L. W. Reed, 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216: 63鈥?5.CrossRef PubMed
    Becker, V., L. Caputo, J. Ord贸帽ez, R. Marce, J. Armengol, L. O. Crossetti & V. L. M. Huszar, 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research 44: 3345鈥?354.CrossRef PubMed
    Bergstr枚m, A., C. Bigler, U. Stensdotter & E. S. Lindstr枚m, 2008. Composition and dispersal of riverine and lake phytoplankton communities in connected systems with different water retention times. Freshwater Biology 53: 2520鈥?529.CrossRef
    Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: 1鈥?7.CrossRef
    Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRef
    Borics, G., I. Grigorszky, J. Padis谩k, F. A. R. Barbosa & Z. Z. Doma, 2005. Dinoflagellates from tropical Brazilian lakes with description of Peridinium brasiliense sp. nova. Algological Studies 118: 47鈥?1.CrossRef
    Butterwick, C., S. I. Heaney & J. F. Talling, 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291鈥?00.CrossRef
    Coesel, P. F. M. & K. Wardenaar, 1990. Growth responses of planktonic desmid species in a temperature-light gradient. Freshwater Biology 23: 551鈥?60.CrossRef
    Cottenie, K. & L. De Meester, 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85: 114鈥?19.CrossRef
    Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175鈥?182.CrossRef PubMed
    De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740鈥?47.CrossRef PubMed
    Elliott, J. A., 2010. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864鈥?76.CrossRef
    Estrada, M. & E. Berdalet, 1997. Phytoplankton in a turbulent world. Scientia Marina 61: 125鈥?40.
    Etienne, R. S. & D. Alonso, 2007. Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. Journal of Statistical Physics 128: 485鈥?10.CrossRef
    Han, B. P. & Z. W. Liu, 2012. Tropical and Sub-tropical Reservoir Limnology in China, Theory and Practice. Springer, Dordrecht.CrossRef
    Hillebrand, H., C. D. D眉rselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403鈥?24.CrossRef
    Howeth, J. G. & M. A. Leibold, 2010. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91: 2727鈥?741.CrossRef PubMed
    Hu, R., B. P. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton: a case study from south China. Hydrobiologia 701: 219鈥?33.CrossRef
    Lewis, W. M., 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences 40: 1779鈥?787.CrossRef
    Leibold, M. A. & T. E. Miller, 2004. From Metapopulations to Metacommunities. In Hanski, I. & O. E. Gaggiotti (eds), Ecology, Genetics and Evolution of Metapopulations. Academic Press, San Diego: 133鈥?50.CrossRef
    Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letter 10: 1170鈥?181.CrossRef
    Litchman, E., P. T. Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15鈥?8.CrossRef
    Litchman, E., K. F. Edwards, C. A. Klausmeier & M. K. Thomas, 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress series 470: 235鈥?48.CrossRef
    Liu, J., J. Soininen, B. P. Han & S. J. Declerck, 2013. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography 40: 2238鈥?248.CrossRef
    Naselli-Flores, L., J. Padis谩k, M. T. Dokulil & I. Chrus, 2003. Equilibrium/steady-state concept in phytoplankton. Hydrobiologia 502: 395鈥?03.CrossRef
    Padis谩k, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1鈥?9.CrossRef
    Padis谩k, J., E. Hajnal, L. Naselli-Flores, M. T. Dokulil, P. N玫ges & T. Zohary, 2010. Convergence and divergence in organization of phytoplankton community under various of physical and biological control. Hydrobiologia 639: 205鈥?20.CrossRef
    Padis谩k, J., G. Vasas & G. Borics, 2015. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia. doi:10.鈥?007/鈥媠10750-015-2259-4 .
    R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [avialble on internet at http://鈥媤ww.鈥婻-project.鈥媜rg/鈥?/span> ].
    Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11鈥?6.CrossRef
    Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRef
    Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417鈥?28.CrossRef
    Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825鈥?46.CrossRef
    Salmaso, N., 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long-term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia 660: 59鈥?8.CrossRef
    Sommer, U., 1989. Plankton Ecology: Succession in Plankton Community. Science Tech, Madison: 57鈥?06.
    Spijkerman, E. & P. F. M. Coesel, 1996. Competition for phosphorus among planktonic desmids species in continuous-flow culture. Journal of Phycology 32: 939鈥?48.CrossRef
    Tundisi, J. G. & M. Stra拧kraba, 1999. Theoretical Reservoir Ecology and its Application. International Institute of Ecology, S茫o Carlos. (Printed in Brazil).
    Uterm脰hl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung Theoretische und Angewandte Limnologie 9: 1鈥?8.
    Vadadi-F眉l枚p, C., C. Sipkay, G. M茅sz谩ros & L. Hufnagel, 2012. Climate change and freshwater zooplankton: what does it boil down to? Aquatic Ecology 46: 501鈥?19.CrossRef
    Verreydt, D., L. De Meester, E. Decaestecker, M. J. Villena, K. V. D. Gucht, P. Vannorelingen, W. Vyverman & S. A. J. Declerck, 2012. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities. Ecology Letters 15: 218鈥?26.CrossRef PubMed
    Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179鈥?92.CrossRef PubMed
    Xiao, L. J., B. P. Han, Q. Q. Lin & L. M. Lei, 2007. Usage of flocculation in emergent control of algal bloom in drinking water supplying reservoir. Chinese Journal of Environmental Science 28: 2192鈥?197.
  • 作者单位:Li-Juan Xiao (1)
    Ren Hu (1)
    Liang Peng (1)
    La-Mei Lei (1)
    Yu Feng (1)
    Bo-Ping Han (1)

    1. Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
To evaluate the importance of dispersal by water transportation in structuring phytoplankton community, we compared phytoplankton composition and succession between two connected tropical reservoirs: a large reservoir with a bottom outlet that periodically feeds a small reservoir via a 40 km open channel. Multivariate analysis was carried out on datasets of phytoplankton for exploring the relationship between phytoplankton and environmental variables. Differential survival of phytoplankton taxa during long channel transportation contributed to high dissimilarity of phytoplankton community between the two reservoirs. Local ecological filtering was mainly responsible for structuring the phytoplankton community with a few dominant functional groups in the large reservoir. Phytoplankton community succession in the large reservoir also showed a clear seasonal pattern. The community in the small reservoir had a more diverse functional group composition and did not show a clear seasonal succession because of strong hydrodynamic disturbance and phytoplankton inoculation with periodic water transportation. In conclusion, periodical transportation and mass effect by dispersal disturb succession and seasonal dynamics, and phytoplankton community assemblage depends on both environmental filtering (habitat selection) and dispersal in the small (receiving) reservoir. In addition, the dissimilarity of phytoplankton community between the connected waters was caused by both habitat difference and differential survival of phytoplankton taxa during transportation. Keywords Succession Dissimilarity Dispersal Environmental filter Water transportation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700