用户名: 密码: 验证码:
Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques
详细信息    查看全文
  • 作者:Bernhard Schweizer ; Daixing Lu ; Pu Li
  • 关键词:Co ; simulation ; Solver coupling ; Subcycling ; Implicit ; Semi ; implicit ; Algebraic constraints ; Stability ; Convergence ; Relaxation technique
  • 刊名:Multibody System Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:36
  • 期:1
  • 页码:1-36
  • 全文大小:10,729 KB
  • 参考文献:1. Ambrosio, J., Pombo, J., Rauter, F., Pereira, M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics: Computational Methods and Applications, pp. 231鈥?52. Springer, Berlin (2009)
    2. Ambrosio, J., Pombo, J., Pereira, M., Antunes, P., Mosca, A.: A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains. J. Theor. Appl. Mech. 50(3), 681鈥?99 (2012)
    3. Anderson, K.S.: An order-\(n\) formulation for the motion simulation of general multi-rigid-body tree systems. Comput. Struct. 46(3), 547鈥?59 (1993) MATH CrossRef
    4. Anderson, K., Duan, S.: A hybrid parallelizable low-order algorithm for dynamics of multi-rigid-body systems: Part I, Chain systems. Math. Comput. Model. 30(9鈥?0), 193鈥?15 (1999) MATH CrossRef MathSciNet
    5. Arnold, M.: Numerical methods for simulation in applied dynamics. In: Arnold, M., Schiehlen, W. (eds.) Simulation Techniques for Applied Dynamics. Springer, Berlin (2009) CrossRef
    6. Arnold, M., Clauss, C., Schierz, T.: Error analysis and error estimates for co-simulation in FMI for model exchange and co-simulation in V2.0. Arch. Mech. Eng. 60(1), 75鈥?4 (2013)
    7. Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-simulation techniques: Analytical investigations based on a 2-DOF test model. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, IMSD 2010, Lappeenranta, Finland, 25鈥?7 May (2010)
    8. Busch, M., Schweizer, B.: An explicit approach for controlling the macro-step size of co-simulation methods. In: Proceedings of the 7th European Nonlinear Dynamics, ENOC 2011, Rome, Italy, 24鈥?9 July (2011)
    9. Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82(6), 723鈥?41 (2012) MATH CrossRef
    10. Carstens, V., Kemme, R., Schmitt, S.: Coupled simulation of flow-structure interaction in turbomachinery. Aerosp. Sci. Technol. 7, 298鈥?06 (2003) MATH CrossRef
    11. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: Space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55鈥?3 (2000) MATH CrossRef
    12. Daniel, W.J.T.: Analysis and implementation of a new constant acceleration subcycling algorithm. Int. J. Numer. Methods Eng. 40, 2841鈥?855 (1997) MATH CrossRef
    13. Daniel, W.J.T.: A study of the stability of subcycling algorithms in structural dynamics. Comput. Methods Appl. Mech. Eng. 156, 1鈥?3 (1998) MATH CrossRef MathSciNet
    14. Daniel, W.J.T.: A partial velocity approach to subcycling structural dynamics. Comput. Methods Appl. Mech. Eng. 192, 375鈥?94 (2003) MATH CrossRef
    15. Datar, M., Stanciulescu, I., Negrut, D.: A co-simulation framework for full vehicle analysis. In: Proceedings of the SAE 2011 World Congress, SAE Technical Paper 2011-01-0516, 12鈥?4 April, Detroit, Michigan, USA (2011).
    16. Datar, M., Stanciulescu, I., Negrut, D.: A co-simulation environment for high-fidelity virtual prototyping of vehicle systems. Int. J. Veh. Syst. Model. Test. 7, 54鈥?2 (2012) CrossRef
    17. D枚rfel, M.R., Simeon, B.: Analysis and acceleration of a fluid-structure interaction coupling scheme. Numer. Math. Adv. Appl., 307鈥?15 (2010)
    18. Eberhard, P., Gaugele, T., Heisel, U., Storchak, M.: A discrete element material model used in a co-simulated Charpy impact test and for heat transfer. In: Proceedings 1st Int. Conference on Process Machine Interactions, Hannover, Germany, 3鈥? September (2008)
    19. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467鈥?482 (1993) MATH CrossRef MathSciNet
    20. Eich-Soellner, E., F眉hrer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998) MATH CrossRef
    21. Friedrich, M., Ulbrich, H.: A parallel co-simulation for mechatronic systems. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, IMSD 2010, Lappeenranta, Finland, 25鈥?7 May (2010)
    22. Gear, C.W., Gupta, G.K., Leimkuhler, B.J.: Automatic integration of the Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12&13, 77鈥?0 (1985) CrossRef MathSciNet
    23. Gonzalez, F., Gonzalez, M., Cuadrado, J.: Weak coupling of multibody dynamics and block diagram simulation tools. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, San Diego, California, USA, August 30鈥揝eptember 2 (2009)
    24. Gonzalez, F., Naya, M.A., Luaces, A., Gonzalez, M.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461鈥?83 (2011) MATH CrossRef
    25. Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. J. Dyn. Syst. Meas. Control 126, 1鈥?3 (2004) CrossRef
    26. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd edn. Springer, Berlin (2009)
    27. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2010)
    28. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Needhom Heights (1989)
    29. Hippmann, G., Arnold, M., Schittenhelm, M.: Efficient simulation of bush and roller chain drives. In: Proceedings of ECCOMAS Thematic Conference on Multibody Dynamics, Madrid, Spain, 21鈥?4 June (2005)
    30. K眉bler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93鈥?13 (2000) MATH CrossRef
    31. K眉bler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Syst. Dyn. 4, 107鈥?27 (2000) MATH CrossRef
    32. Lacoursiere, C., Nordfeldth, F., Linde, M.: A partitioning method for parallelization of large systems in realtime. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, IMSD 2014, ACMD 2014, Bexco, Busan, Korea, June 30鈥揓uly 3 (2014)
    33. Laflin, J.J., Anderson, K.S., Khan, I.M., Poursina, M.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn., 9 (2014). doi:10.鈥?115/鈥?.鈥?026072
    34. Lehnart, A., Fleissner, F., Eberhard, P.: Using SPH in a co-simulation approach to simulate sloshing in tank vehicles. In: Proceedings SPHERIC4, Nantes, France, 27鈥?9 May (2009)
    35. Liao, Y.G., Du, H.I.: Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system. Proc. Inst. Mech. Eng. K, J. Multibody Dyn. 215, 141鈥?51 (2001) CrossRef
    36. Lubich, Ch.: Extrapolation integrators for constraint multibody systems. Impact Comput. Sci. Eng. 3, 213鈥?34 (1991) MATH CrossRef MathSciNet
    37. Malczyk, P., Fraczek, J.: Evaluation of parallel efficiency in modeling of mechanisms using commercial multibody solvers. Arch. Mech. Eng. LVI(3), 237鈥?49 (2009)
    38. Meynen, S., Mayer, J., Sch盲fer, M.: Coupling algorithms for the numerical simulation of fluid-structure-interaction problems. In: ECCOMAS 2000: European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona (2000)
    39. Mraz, L., Valasek, M.: Parallelization of multibody system dynamics by additional dynamics. In: Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2013, Zagreb, Croatia, 1鈥? July (2013)
    40. Naya, M., Cuadrado, J., Dopico, D., Lugris, U.: An efficient unified method for the combined simulation of multibody and hydraulic dynamics: Comparison with simplified and co-integration approaches. Arch. Mech. Eng. LVIII, 223鈥?43 (2011) CrossRef
    41. Negrut, N., Melanz, D., Mazhar, H., Lamb, D., Jayakumar, P.: Investigating through simulation the mobility of light tracked vehicles operating on discrete granular terrain. SAE Int. J. Passeng. Cars, Mech. Syst. 6, 369鈥?81 (2013). doi:10.鈥?271/鈥?013-01-1191 CrossRef
    42. Pombo, J., Ambrosio, J.: Multiple pantograph interaction with catenaries in high-speed trains. J. Comput. Nonlinear Dyn. 7(4), 041008 (2012) CrossRef
    43. Sch盲fer, M., Yigit, S., Heck, M.: Implicit partitioned fluid-structure interaction coupling. In: ASME, PVP2006-ICPVT11-93184, Vancouver, Canada (2006)
    44. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149鈥?88 (1997) MATH CrossRef MathSciNet
    45. Simeon, B.: Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach. Springer, Berlin (2013) CrossRef
    46. Schmoll, R., Schweizer, B.: Co-simulation of multibody and hydraulic systems: comparison of different coupling approaches. In: Proceedings of ECCOMAS Thematic Conference on Multibody Dynamics 2011, Brussels, Belgium, 4鈥? July (2011)
    47. Schweizer, B., Lu, D.: Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints. ZAMM鈥擩. Appl. Math. Mech. (2014). doi:10.鈥?002/鈥媧amm.鈥?01300191
    48. Schweizer, B., Lu, D.: Co-simulation methods for solver coupling with algebraic constraints: Semi-implicit coupling techniques. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, IMSD 2014, ACMD 2014 Bexco, Busan, Korea, June 30鈥揓uly 3 (2014)
    49. Schweizer, B., Lu, D.: Stabilized index-2 co-simulation approach for solver coupling with algebraic constraints. Multibody Syst. Dyn. (2014). doi:10.鈥?007/鈥媠11044-014-9422-y
    50. Schweizer, B., Lu, D.: Semi-implicit co-simulation approach for solver coupling. Arch. Appl. Mech. (2014). doi:10.鈥?007/鈥媠00419-014-0883-5
    51. Schweizer, B., Li, P., Lu, D.: Explicit and implicit co-simulation methods: Stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. (2014). doi:10.鈥?115/鈥?.鈥?028503
    52. Schweizer, B., Li, P., Lu, D., Meyer, T.: Stabilized implicit co-simulation methods: Solver coupling based on constitutive laws. Arch. Appl. Mech. (2015). doi:10.鈥?007/鈥媠00419-015-0999-2
    53. Schweizer, B., Li, P., Lu, D., Meyer, T.: Stabilized implicit co-simulation method: Solver coupling with algebraic constraints for multibody systems. J. Comput. Nonlinear Dyn. (2015). doi:10.鈥?115/鈥?.鈥?030508
    54. Schweizer, B., Li, P., Lu, D.: Implicit co-simulation methods: stability and convergence analysis for solver coupling with algebraic constraints. ZAMM鈥擩. Appl. Math. Mech. (2015). doi:10.鈥?002/鈥媧amm.鈥?01400087
    55. Spreng, F., Eberhard, P., Fleissner, F.: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms. Theor. Appl. Mech. Lett. 3(1), 8鈥?13005 (2013) CrossRef
    56. Tomulik, P., Fraczek, J.: Simulation of multibody systems with the use of coupling techniques: a case study. Multibody Syst. Dyn. 25(2), 145鈥?65 (2011) CrossRef MathSciNet
    57. Verhoeven, A., Tasic, B., Beelen, T.G.J., ter Maten, E.J.W., Mattheij, R.M.M.: BDF compound-fast multirate transient analysis with adaptive stepsize control. J. Numer. Anal. Ind. Appl. Math. 3(3鈥?), 275鈥?97 (2008) MATH
    58. Zierath, J., Woernle, C.: Development of a Dirichlet-to-Neumann algorithm for contact analysis in boundary element systems and its application to MBS-BEM co-simulation. In: Samin, J.C., Fisette, P. (eds.) MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference, Brussels, Belgium, 4鈥? July (2011)
    59. Zierath, J., Woernle, C.: Contact modelling in multibody systems by means of a boundary element co-simulation and a Dirichlet-to-Neumann algorithm. In: O帽ate, E. (Series ed.) Computational Methods in Applied Sciences. Springer, Berlin (2012)
  • 作者单位:Bernhard Schweizer (1)
    Daixing Lu (1)
    Pu Li (1)

    1. Department of Mechanical Engineering, Institute of Applied Dynamics, Technical University Darmstadt, Otto-Berndt-Strasse 2, 64287, Darmstadt, Germany
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Optimization
    Electronic and Computer Engineering
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-272X
文摘
Based on the stabilized index-2 formulation for multibody systems, a semi-implicit co-simulation approach for solver coupling with algebraic constraints has been presented by Schweizer and Lu (Multibody Syst. Dyn., 2014) for the case that constant approximation is used for extrapolating/interpolating the coupling variables. In the manuscript at hand, this method is generalized to the case that higher-order approximation is employed. Direct application of higher-order polynomials for extrapolating/interpolating the coupling variables fails. Using linear approximation polynomials, artificial oscillations in the Lagrange multipliers of the kinematical differential equations are observed. For quadratic and higher-order polynomials, the co-simulation becomes unstable. In this work, the key idea to obtain stable solutions without artificial oscillations is to apply a relaxation technique. A detailed stability and convergence analysis is presented in the paper for the case of higher-order approximation. In this context, the influence of the relaxation parameter on the stability and convergence behavior is investigated. Applicability and robustness of the stabilized index-2 co-simulation method incorporating higher-order approximation polynomials is demonstrated with different numerical examples. Using piecewise constant approximation polynomials for the coupling variables produces discontinuous accelerations and reaction forces in the subsystems at the macrotime points, which may entail problems for the subsystem integrator. With higher-order approximation polynomials, the coupling variables and in consequence the accelerations and reaction forces in the subsystems become continuous. Keywords Co-simulation Solver coupling Subcycling Implicit Semi-implicit Algebraic constraints Stability Convergence Relaxation technique

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700