用户名: 密码: 验证码:
Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau
详细信息    查看全文
  • 作者:GuoJie Hu ; Lin Zhao ; XiaoDong Wu ; Ren Li ; TongHua Wu
  • 关键词:permafrost ; COUPMODEL ; hydrothermal processes ; phase change ; soil temperature ; soil moisture
  • 刊名:Science China Earth Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:2309-2326
  • 全文大小:2,992 KB
  • 参考文献:Alexeev V A, Nicolsky D J, Romanovsky V E, Lawrence D M. 2007. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys Res Lett, 34: L090502CrossRef
    Allison I, Barry R G, Goodison B E. 2001. Climate and Cryosphere (CLIC) Project Science and Co-ordination Plan (Version 1), WCRP-114, WMO/TD No.1053, 1-6
    Brown J, Romanovsky V, Vladimir E. 2008. Report from the International permafrost association: State of permafrost in the first decade of the 21st Century. Permafrost Periglacial Process, 19: 255-60CrossRef
    Buteau S, Fortier R, Delisle G, Allard M. 2004. Numerical simulations of the impacts of climate warming on a permafrost mound. Permafrost Periglacial Process, 15: 41-7CrossRef
    Cheng G D, Wu T H. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res, 112: 1-0
    Cheng G D, Zhao L. 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau (in Chinese). Quat Sci Rev, 20: 521-31
    Cheng G D. 1990. Recent development of geocryological study in China (in Chinese). Acta Geogr Sin, 45: 220-23
    Cheng Z G, Liu X D, Fan G Z, Bai A J, Wang B Z. 2011. Spatiotemporal distribution of climate change over the Qinghai-Tibetan Plateau in 21st Century (in Chinese). Arid Zone Res, 28: 669-76CrossRef
    Demchenko P F, Eliseev A V, Arzhanov M M, Mokhov I I. 2006. Impact of global warming rate on permafrost degradation. Izv Atmos Ocean Phy, 42: 32-9CrossRef
    Eckersten H, Blomback K, Katterer T, Nymana P. 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agric Ecosyst Environ, 86: 221-35CrossRef
    Franchini M, Pacciani M. 1991. Comparative analysis of several conceptual rainfall-runoff models. J Hydrol, 122: 161-19CrossRef
    Gao Z Q, Chae N, Kim J, Hong J, Choi T, Lee H. 2004. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibetan prairie using the simple biosphere model 2(SiB2). J Geophys Res, 102: D06102
    Guglielmin M, Dramis F. 1999. Permafrost as a climatic indicator in northern Victoria Land, Antarctica. Ann Glaciol, 29: 131-35CrossRef
    Hansson K, Simunek J, Mizoguchi M, Lundina L, Van Genuchten M. 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J, 3: 693-04
    Harlan R L. 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res, 9: 1314-323CrossRef
    Henry K, Smith M. 2001. A model-based map of ground temperatures for the permafrost regions of Canada. Permafrost Periglacial Process, 12: 389-98CrossRef
    Hinkel K M, Nelson F E. 2003. Spatial and temporal patterns of active layer thickness at circumpolar active layer monitoring (CALM) sites in northern Alaska, 1995-000. J Geophys Res, 108: 8168CrossRef
    Hollesen J, Elberling B, Jansson P E. 2011. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Glob Change Biol, 17: 911-26CrossRef
    Hu G J, Zhao L, Li R, Wu T H, Xiao Y, Jiao K Q, Qiao Y P, Jiao Y L. 2013. The Water-thermal characteristics of frozen soil under freezethaw based on CoupModel (in Chinese). Sci Geogr Sin, 33: 356-62
    Hu H P, Ye B S, Zhou Y H, Tian F Q. 2006. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet. Sci China Ser D-Earth Sci, 49: 1311-322CrossRef
    Ikard S J, Gooseff M N, Barrett J E, Takacs-Vesbach C. 2009. Thermal characterization of active layer across a soil moisture gradient in the McMurdo dry valleys, Antarctica. Permafrost Periglacial Process, 20: 389-98CrossRef
    IPCC. 2007. Climate Change Synthesis Report. Cambridge: Cambridge University Press
    Jansson P E, Karlberg L. 2004. Theory and practice of coupled heat and mass transfer model for soil-plant-atmosphere system (in Chinese). In: Zhang H J, Cheng J H, Wang W. Translation. Beijing: Science Press
    Jansson P E, Moon D. 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ Modell Softw, 16: 37-6CrossRef
    Jiang Y Y, Zhuang Q L, O’Donnell Q L. 2012. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model. J Geophys Res, 117: D11110CrossRef
    Jiang Z H, Zhang X, Wang J. 2008. Projection of climate change in China in the 21st century by IPCC-AR4 Models. Geogr Res, 27: 787-99
    Kane D L, Hinzman L D, Zarling J P. 1991. Thermal response of the active layer to climate warming in a permafrost environment. Cold Reg Sci Technol, 19: 111-22CrossRef
    Koven C D, Ringeval B, Friedlingstein P, Ciaisa P, Cadulea P, Khvorostyanovd D, Krinnere G, Tarnocaif C. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA, 108: 14769-4774CrossRef
    Li R, Zhao L, Ding Y
  • 作者单位:GuoJie Hu (1)
    Lin Zhao (1)
    XiaoDong Wu (1)
    Ren Li (1)
    TongHua Wu (1)
    ChangWei Xie (1)
    QiangQiang Pang (1)
    Yao Xiao (1)
    WangPing Li (1)
    YongPing Qiao (1)
    JianZong Shi (1)

    1. Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarios. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-90 cm as a result of a 1-°C warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-0%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate. Keywords permafrost COUPMODEL hydrothermal processes phase change soil temperature soil moisture

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700