用户名: 密码: 验证码:
An overview of chronic myeloid leukemia and its animal models
详细信息    查看全文
  • 作者:WeiXu Ma ; Ning Ma ; XiaoHui Chen ; YiYue Zhang ; WenQing Zhang
  • 关键词:chronic myeloid leukemia (CML) ; animal disease model ; zebrafish
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:1202-1208
  • 全文大小:403 KB
  • 参考文献:1.Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol, 2014, 89: 547鈥?56CrossRef PubMed
    2.Pasternak G, Hochhaus A, Schultheis B, Hehlmann R. Chronic myelogenous leukemia: molecular and cellular aspects. J Cancer Res Clin Oncol, 1998, 124: 643鈥?60CrossRef PubMed
    3.Hungerford DA, Nowell PC. A minute chromosome in human granulocytic leukemia. Science, 1960, 132: 1497鈥?497
    4.Caspersson T, Gahrton G, Lindsten J, Zech L. Identification of the Philadelphia chromosome as a number 22 by quinacrine mustard fluorescence analysis. Exp Cell Res, 1970, 63: 238鈥?40CrossRef PubMed
    5.Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243: 290鈥?93CrossRef PubMed
    6.Rowley JD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet, 1973, 16: 109鈥?12PubMed
    7.Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell, 1984, 36: 93鈥?9CrossRef PubMed
    8.Kurzrock R, Kantarjian HM, Druker BJ, Talpaz M. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med, 2003, 138: 819鈥?30CrossRef PubMed
    9.Gore JM. Chronic myeloid leukemia and chronic lymphocytic leukemia. JAAPA, 2014, 27: 45鈥?6PubMed
    10.Inokuchi K. Chronic myelogenous leukemia: from molecular biology to clinical aspects and novel targeted therapies. J Nippon Med Sch, 2006, 73: 178鈥?92CrossRef PubMed
    11.Hariharan IK, Harris AW, Crawford M, Abud H, Webb E, Cory S, Adams JM. A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol, 1989, 9: 2798鈥?805PubMedCentral CrossRef PubMed
    12.Heisterkamp N, Jenster G, Ten HJ, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature, 1990, 344: 251鈥?53CrossRef PubMed
    13.Voncken JW, Griffiths S, Greaves MF, Pattengale PK, Heisterkamp N, Groffen J. Restricted oncogenicity of BCR/ABL p190 in transgenic mice. Cancer Res, 1992, 52: 4534鈥?539PubMed
    14.Voncken JW, Kaartinen V, Pattengale PK, Germeraad WT, Groffen J, Heisterkamp N. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood, 1995, 86: 4603鈥?611PubMed
    15.Honda H, Fujii T, Takatoku M, Mano H, Witte ON, Yazaki Y, Hirai H. Expression of p210bcr/abl by metallothionein promoter induced T-cell leukemia in transgenic mice. Blood, 1995, 85: 2853鈥?861PubMed
    16.Honda H, Oda H, Suzuki T, Takahashi T, Witte ON, Ozawa K, Ishikawa T, Yazaki Y, Hirai H. Development of acute lymphoblastic leukemia and myeloproliferative disorder in transgenic mice expressing p210bcr/abl: a novel transgenic model for human Ph1-positive leukemias. Blood, 1998, 91: 2067鈥?075PubMed
    17.Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA, 2003, 100: 10002鈥?0007PubMedCentral CrossRef PubMed
    18.Perez-Caro M, Cobaleda C, Gonzalez-Herrero I, Vicente-Duenas C, Bermejo-Rodriguez C, Sanchez-Beato M, Orfao A, Pintado B, Flores T, Sanchez-Martin M, Jimenez R, Piris MA, Sanchez-Garcia I. Cancer induction by restriction of oncogene expression to the stem cell compartment. Embo J, 2009, 28: 8鈥?0PubMedCentral CrossRef PubMed
    19.Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA, 1992, 89: 5547鈥?551PubMedCentral CrossRef PubMed
    20.Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science, 1995, 268: 1766鈥?769CrossRef PubMed
    21.Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet, 2000, 24: 57鈥?0CrossRef PubMed
    22.Radomska HS, Gonzalez DA, Okuno Y, Iwasaki H, Nagy A, Akashi K, Tenen DG, Huettner CS. Transgenic targeting with regulatory elements of the human CD34 gene. Blood, 2002, 100: 4410鈥?419CrossRef PubMed
    23.Huettner CS, Koschmieder S, Iwasaki H, Iwasaki-Arai J, Radomska HS, Akashi K, Tenen DG. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood, 2003, 102: 3363鈥?370CrossRef PubMed
    24.Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, Dayaram T, Geary K, Green AR, Tenen DG, Huettner CS. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood, 2005, 105: 324鈥?34CrossRef PubMed
    25.Castellanos A, Pintado B, Weruaga E, Arevalo R, Lopez A, Orfao A, Sanchez-Garcia I. A BCR-ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood, 1997, 90: 2168鈥?174PubMed
    26.Peters DG, Klucher KM, Perlingeiro RC, Dessain SK, Koh EY, Daley GQ. Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene, 2001, 20: 2636鈥?646CrossRef PubMed
    27.Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science, 1990, 247: 824鈥?30CrossRef PubMed
    28.Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA, 1990, 87: 6649鈥?653PubMedCentral CrossRef PubMed
    29.Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood, 1998, 92: 3780鈥?792PubMed
    30.Li S, Ilaria R J, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med, 1999, 189: 1399鈥?412PubMedCentral CrossRef PubMed
    31.Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte- macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood, 1998, 92: 3829鈥?840PubMed
    32.Wolff NC, Ilaria RJ. Establishment of a murine model for therapy- treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood, 2001, 98: 2808鈥?816CrossRef PubMed
    33.He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood, 2002, 99: 2957鈥?968CrossRef PubMed
    34.Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 2000, 96: 664鈥?70PubMed
    35.Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH2-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol, 2001, 21: 840鈥?53PubMedCentral CrossRef PubMed
    36.Ye D, Wolff N, Li L, Zhang S, Ilaria RJ. STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood, 2006, 107: 4917鈥?925PubMedCentral CrossRef PubMed
    37.Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, Fajmann S, Grebien F, Warsch W, Stengl G, Hennighausen L, Poli V, Beug H, Moriggl R, Sexl V. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. Embo Mol Med, 2010, 2: 98鈥?10PubMedCentral CrossRef PubMed
    38.Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, Zaleskas VM, Van Etten RA. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood, 2012, 119: 3550鈥?560PubMedCentral CrossRef PubMed
    39.Zhang SJ, Ma LY, Huang QH, Li G, Gu BW, Gao XD, Shi JY, Wang YY, Gao L, Cai X, Ren RB, Zhu J, Chen Z, Chen SJ. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA, 2008, 105: 2076鈥?081PubMedCentral CrossRef PubMed
    40.El Eit RM, Iskandarani AN, Saliba JL, Jabbour MN, Mahfouz RA, Bitar NM, Ayoubi HR, Zaatari GS, Mahon FX, De The HB, Bazarbachi AA, Nasr RR. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha. Int J Cancer, 2014, 134: 988鈥?96CrossRef PubMed
    41.Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, Mc Combie WR, Kogan SC, Hochhaus A, Lowe SW. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA, 2006, 103: 7444鈥?449PubMedCentral CrossRef PubMed
    42.Albers C, Illert AL, Miething C, Leischner H, Thiede M, Peschel C, Duyster J. An RNAi-based system for loss-of-function analysis identifies Raf1 as a crucial mediator of BCR-ABL-driven leukemogenesis. Blood, 2011, 118: 2200鈥?210CrossRef PubMed
    43.Gillis LC, Berry DM, Minden MD, Mc Glade CJ, Barber DL. Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia. Leukemia, 2013, 27: 1666鈥?676CrossRef PubMed
    44.Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood, 1992, 79: 2089鈥?098PubMed
    45.Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B, Jamal N, Messner H, Addey L, Minden M, Laraya P, Keating A, Eaves A, Lansdorp PM, Eaves CJ, Dick JE. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood, 1996, 87: 1539鈥?548PubMed
    46.Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, Nayar R, Laraya P, Minden M, Keating A, Eaves AC, Eaves CJ, Dick JE. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood, 1998, 91: 2406鈥?414PubMed
    47.Schneckenleithner C, Hoelbl-Kovacic A, Sexl V. Modeling BCR/ABL-driven malignancies in the mouse. Methods Mol Biol, 2015, 1267: 263鈥?82CrossRef PubMed
    48.Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood, 2006, 108: 3976鈥?978CrossRef PubMed
    49.Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol, 2006, 80: 1281鈥?288CrossRef PubMed
    50.Rosenbauer F, Koschmieder S, Steidl U, Tenen DG. Effect of transcription- factor concentrations on leukemic stem cells. Blood, 2005, 106: 1519鈥?524PubMedCentral CrossRef PubMed
    51.Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN, Delva L. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol, 2008, 143: 378鈥?82CrossRef PubMed
    52.Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One, 2013, 8: e59070PubMedCentral CrossRef PubMed
    53.Onnebo SM, Condron MM, McPhee DO, Lieschke GJ, Ward AC. Hematopoietic perturbation in zebrafish expressing a tel-jak2a fusion. Exp Hematol, 2005, 33: 182鈥?88CrossRef PubMed
    54.Onnebo SM, Rasighaemi P, Kumar J, Liongue C, Ward AC. Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica, 2012, 97: 1895鈥?903PubMedCentral CrossRef PubMed
    55.Buchholz F, Refaeli Y, Trumpp A, Bishop JM. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxPmediated recombination in the mouse. Embo Rep, 2000, 1: 133鈥?39PubMedCentral CrossRef PubMed
    56.Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, Rene O, Katibah GE, Zhang L, Holmes MC, Doyon Y, Concordet JP, Giovannangeli C, Jasin M, Brunet E. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res, 2013, 23: 1182鈥?193PubMedCentral CrossRef PubMed
    57.Zhang L, Zhou Q. CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci China Life Sci, 2014, 57: 639鈥?40CrossRef PubMed
    58.Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez- Perales S. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun, 2014, 5: 3964CrossRef PubMed
  • 作者单位:WeiXu Ma (1)
    Ning Ma (1)
    XiaoHui Chen (1)
    YiYue Zhang (1)
    WenQing Zhang (1)

    1. Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Chronic myeloid leukemia (CML) is a form of leukemia characterized by the presence of clonal bone marrow stem cells with the proliferation of mature granulocytes (neutrophils, eosinophils, and basophils) and their precursors. CML is a type of myeloproliferative disease associated with a characteristic chromosomal translocation called the Philadelphia (Ph) chromosome or t (9;22) translocation (BCR-ABL). CML is now usually treated with targeted drugs called tyrosine kinase inhibitors (TKIs). The mechanism and natural history of CML is still unclear. Here, we summarize the present CML animal disease models and compare them with each other. Meanwhile, we propose that it is a very wise choice to establish zebrafish (Danio rerio) CML model mimics clinical CML. This model could be used to learn more about the mechanism of CML, and to aid in the development of new drugs to treat CML. Keywords chronic myeloid leukemia (CML) animal disease model zebrafish

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700