用户名: 密码: 验证码:
Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd
详细信息    查看全文
  • 作者:Qi Tao ; Dandi Hou ; Xiaoe Yang ; Tingqiang Li
  • 关键词:Anion channel inhibitor ; Cadmium ; Hyperaccumulation ; Oxalate secretion ; Sedum alfredii ; Root apex
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:398
  • 期:1-2
  • 页码:139-152
  • 全文大小:1,031 KB
  • 参考文献:Agrawal B, Lakshmanan V, Kaushik S, Bais HP (2012) Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta 236:477–489PubMed CrossRef
    Agrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J Biol Chem 288:7351–7362PubMed PubMedCentral CrossRef
    Berkelaar E, Hale B (2000) The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:381–387
    Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117CrossRef
    Conte SS, Walker EL (2012) Genetic and biochemical approaches for studying the yellow stripe-like transporter family in plants. Curr Top Membr 69:295–322PubMed CrossRef
    Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725PubMed PubMedCentral CrossRef
    Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11PubMed PubMedCentral CrossRef
    Dinkelaker B, Romheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292
    Duarte B, Delgado M, Cacador I (2007) The role of citric acid in cadmium and nickel uptakeand translocation, in Halimione portulacoides. Chemosphere 69:836–840PubMed CrossRef
    Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant Cell Environ 33:702–716PubMed
    Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots - the impact of organic acids. Plant Soil 289:355–368CrossRef
    Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50PubMed CrossRef
    Kotula L, Colmer TD, Nakazono M (2014) Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Funct Plant Biol 41:187–202
    Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMed CrossRef
    Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757PubMed PubMedCentral CrossRef
    Li LZ, Liu XJ, Peijnenburg WJGM, Zhao JM, Chen XB, Yu JB, Wu HF (2012a) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7PubMed CrossRef
    Li TQ, Xu ZH, Han X, Yang XE, Donald SL (2012b) Characterization of dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii and its effect on the mobility of zinc. Chemosphere 88:570–576PubMed CrossRef
    Li TQ, Tao Q, Liang CF, Shohag MJI, Yang XE, Donald SL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255PubMed CrossRef
    Li TQ, Tao Q, Liang CF, Yang XE (2014) Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Sci Pollut Res 21:5899–5908CrossRef
    Li TQ, Tao Q, Shohag MJI, Yang XE, Sparks DL (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399CrossRef
    Lu LL, Tian SK, Yang XE, Wang X, Brown PH, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213PubMed PubMedCentral CrossRef
    Lu LL, Liao XC, Labavitch J, Yang XE, Nelson E, Du YH, Brown PH, Tian SK (2014) Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiol Biochem 84:224–232PubMed CrossRef
    Lux A, Marthinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37PubMed CrossRef
    M’Sehli W, Youssfi S, Donnini S, Dell’Orto M, De Nisi P, Zocchi G, Abdelly C, Gharsalli M (2008) Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. Plant Soil 312:151–162CrossRef
    McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282PubMed CrossRef
    Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilization and plant availability- the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113CrossRef
    North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica(L.) Miller as soil moisture varies. Ann Bot 77:133–142CrossRef
    Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinium L). Plant Soil 189:49–55
    Pineros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a Cd-selective micro-electrode for the measurement of Cd fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401PubMed PubMedCentral CrossRef
    Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-lzzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: Role of root exudates. Environ Pollut 157:2697–2703PubMed CrossRef
    Roberto T, Stefano C, Mimmo T (2015) Dynamics, thermodynamics and kinetics of exudates: crucial issues in understanding rhizosphere processes. Plant Soil 386:399–406CrossRef
    Roosens N, Verbruggen N, Meerts P (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672
    Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Mol Bio 52:527–560
    Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol 22:531–536CrossRef
    Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. Phytoremediation of contaminated soil and water. CRC Press LLC, 189–200
    Senden MHMN, van der Meer AJGM, Verburg TG, Wolterbeek HT (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171:333–339CrossRef
    Smith RM, Martell AE (1977, 1982, 1989). Critical stability constants. Plenum Press, New York, Vols. 1–6
    Tian SK, Lu LL, Labavitich J, Yang XE, He ZL, Hu HN, Sarngi R, Newvilel M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925PubMed PubMedCentral CrossRef
    Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates Zinc hypertolerance by regulating Zinc bioavailability. Plant Physiol 166:839–852PubMed PubMedCentral CrossRef
    Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd accumulating ecotype of Thlaspi caerulescens using Cd-NMR. Planta 221:928–936PubMed CrossRef
    Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548PubMed CrossRef
    Verbruggen N, Hermans N, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMed CrossRef
    Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His(11) stretch. FEBS Lett 579:1515–1522PubMed CrossRef
    Vítková M, Komárek M, Tejnecký V, Šillerová H (2015) Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J Hazard Mater 293:7–14PubMed CrossRef
    White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207CrossRef
    Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325PubMed CrossRef
    Yang XE, Li TQ, Long XX, Xiong XH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284:109–119CrossRef
    Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153CrossRef
    Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620CrossRef
    Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543PubMed CrossRef
    Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751PubMedCentral CrossRef
    Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Yang JL, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esculentum. Plant Cell Environ 34:1055–1064PubMed CrossRef
  • 作者单位:Qi Tao (1)
    Dandi Hou (1)
    Xiaoe Yang (1)
    Tingqiang Li (1)

    1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Backgrounds and aims Organic acids play an important role in metal detoxification in plant, but accumulation of heavy metals with the help of organic acids secretion in hyperaccumulators has not been well documented. The aim of this study was to investigate the contribution of oxalate secretion to cadmium (Cd) hyperaccumulation in S. alfredii.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700