用户名: 密码: 验证码:
Dipole, Quadrupole, and Octupole Plasmon Resonance Modes in Ag Nanoring Structure: Local Field Enhancement in the Visible and Near Infrared Regions
详细信息    查看全文
  • 作者:Zao Yi ; Gao Niu ; Jiafu Chen ; Jiangshan Luo ; Xiaonan Liu ; Yong Yi ; Tao Duan…
  • 关键词:Ag nanoring ; Surface plasmons ; Octupole plasmon resonances ; Finite ; difference time ; domain method
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:37-44
  • 全文大小:2,286 KB
  • 参考文献:1.Yang DJ, Yang ZJ, Li YY, Zhou L, Hao ZH, Wang QQ (2015) Plasmonics 10:263–269CrossRef
    2.Khan AD, Khan SD, Khan RU, Ahmad N, Ali A, Khalil A, Khan FA (2014) Plasmonics 9:1091–1102CrossRef
    3.Xu XB, Yi Z, Li XB, Wang YY, Liu JP, Luo JS, Luo BC, Yi YG, Tang YJ (2013) J Phys Chem C 117:17748–17756CrossRef
    4.Wang WD, Li YD, Peng JY, Chen ZQ, Qian J, Chen J, Xu JJ, Sun Q (2014) J Opt 16:035002CrossRef
    5.Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830CrossRef
    6.Rang M, Jones AC, Zhou F, Li ZY, Wiley BJ, Xia Y, Raschke MB (2008) Nano Lett 8:3357–3363CrossRef
    7.Liu ZQ, Liu GQ, Liu XS, Huang K, Chen YH, Hu Y, Fu GL (2013) Plasmonics 8:1285–1292CrossRef
    8.Yi Z, Yi Y, Luo JS, Ye X, Wu PH, Ji XC, Jiang XD, Yi YG, Tang YJ (2015) RSC Adv 5:1718–1729CrossRef
    9.Yi Z, Xu XB, Fang Q, Wang YY, Li XB, Tan XL, Luo JS, Jiang XD, Wu WD, Yi YG, Tang YJ (2014) Appl Phys A 114:485–493CrossRef
    10.Liu F, Lu YH, Yu WH, Fu Q, Wang P, Ming H (2013) Plasmonics 8:1279–1284CrossRef
    11.Li RK, To H, Andonian G, Feng J, Polyakov A, Scoby CM, Thompson K, Wan W, Padmore HA, Musumeci P (2013) Phys Rev Lett 110:074801CrossRef
    12.Yi Z, Luo JS, Li XB, Yi Y, Xu XB, Wu PH, Jiang XD, Wu WD, Yi YG, Tang YJ (2013) J Phys Chem C 117:26295–26304CrossRef
    13.Xu XB, Luo JS, Liu M, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2015) Phys Chem Chem Phys 17:2641–2650CrossRef
    14.Xu XB, Luo JS, Liu M, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2015) Plasmonics 10:369–381CrossRef
    15.Xu XB, Luo JS, Liu M, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2014) Chem Phys Lett 25:98–103CrossRef
    16.Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, Garcíade-Abajo FJ (2003) Phys Rev Lett 90:057401CrossRef
    17.Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Nano Lett 7:1256–1263CrossRef
    18.Kelf TA, Tanaka Y, Matsuda O, Larsson EM, Sutherland DS, Wright OB (2011) Nano Lett 11:3893–3898CrossRef
    19.Zou S (2008) Opt Lett 33:2113–2115CrossRef
    20.Jung KY, Teixeira FL, Reano RM (2007) J Lightwave Technol 25:2757–2765CrossRef
    21.Drezet A, Genet C, Ebbesen TW (2008) Phys Rev Lett 101:043902CrossRef
    22.Seo S, Kim HC, Ko H, Cheng M (2007) J Vac Sci Technol B 25:2271–2276CrossRef
    23.Clark AW, Cooper JM (2011) Small 7:119–125CrossRef
    24.Grosjean T, Fahys A, Suarez M, Charraut D, Salut R, Courjon D (2008) J Microsc 229:354–364CrossRef
    25.Huang C, Ye J, Wang S, Stakenborg T, Lagae L (2012) Appl Phys Lett 100:173114CrossRef
    26.Ye J, Shioi M, Lodewijks K, Lagae L, Kawamura T, Dorpe PV (2010) Appl Phys Lett 97:163106CrossRef
    27.Yi Z, Luo JS, Yi Y, Xu XB, Wu PH, Jiang XD, Yi YG, Tang YJ (2014) RSC Advances 4:23670–23678CrossRef
    28.Yi Z, Luo JS, Yi Y, Kang XL, Ye X, Bi P, Wu PH, Jiang XD, Yi YG, Tang YJ (2015) Op Mat Express 5:210–217CrossRef
    29.Yi Z, Li XB, Luo JS, Yi Y, Xu XB, Wu PH, Jiang XD, Wu WD, Yi YG, Tang YJ (2014) Plasmonics 9:375–379CrossRef
    30.The simulations were performed by the FDTD solutions trademark software. http://​www.​lumerical.​com
    31.Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Appl Opt 37:5271–5283CrossRef
    32.Palik ED (1998) Handbook of Optical Constants Of Solids III (Academic)
    33.Tseng HY, Lee CK, Wu SY, Chi TT, Yang KM, Wang JY, Kiang YW, Yang CC, Tsai MT, Wu YC, Chou HYE, Chiang CP (2010) Nanotechnology 21:295102CrossRef
    34.Hao F, Larsson EM, Ali TA, Sutherland DS, Nordlander P (2008) Chem Phys Lett 458:262–266CrossRef
    35.Link S, El-Sayed MA (1999) J Phys Chem B 103:4212–4217CrossRef
    36.Tsai CY, Chang KH, Wu CY, Lee PT (2013) Opt Express 21:14090–14096CrossRef
    37.Tsai CY, Lin JW, Wu CY, Lin PT, Lu TW, Lee PT (2012) Nano Lett 12:1648–1654CrossRef
    38.Ye J, Dorpe PV, Lagae L, Maes G, Borghs G (2009) Nanotechnology 20:465203CrossRef
    39.Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) ACS Nano 4(3):1664–1670CrossRef
    40.Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRef
  • 作者单位:Zao Yi (1) (2)
    Gao Niu (2)
    Jiafu Chen (4)
    Jiangshan Luo (2)
    Xiaonan Liu (1) (3)
    Yong Yi (1)
    Tao Duan (1)
    Xiaoli Kang (2)
    Xin Ye (2)
    Pinghui Wu (5)
    Yongjian Tang (1) (2)

    1. Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang, 621900, China
    2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
    4. School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
    3. College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
    5. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, 310027, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Here, we provide a simulation based on finite-difference time-domain (FDTD) way of the properties of surface plasmons on Ag nanoring and study their electric field distribution in order to identify different multiple surface plasmon resonances. We can obtain the symmetric field distribution that parallels to the orientation of direction of incident light. We find their propagation can be controlled. And we discuss some of the parameters that influence the optical response of the Ag nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. The simulation of the field distribution also displays that the location of the field enhancement is specified by the different resonance patterns. Dipole, quadrupole, and octupole plasmon resonance modes can be found in the Ag nanoring at resonance wavelength. This is an important step toward a thorough understanding of plasmon resonance in Ag nanorings. Keywords Ag nanoring Surface plasmons Octupole plasmon resonances Finite-difference time-domain method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700