用户名: 密码: 验证码:
Fabrication and electrochemical performance of nanoflake MnO2@carbon fiber coaxial nanocables for supercapacitors
详细信息    查看全文
  • 作者:Ya Chen ; Wen-Qing Qin ; Jia-Wei Wang ; Bai-Zhen Chen
  • 关键词:Electrochemical capacitor ; Supercapacitor ; Carbon fiber ; MnO2 ; Composite
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:2
  • 页码:241-249
  • 全文大小:1,505 KB
  • 参考文献:1.Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
    2.Aghazadeh M (2012) Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem 42:89–94CrossRef
    3.Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405CrossRef
    4.Naveen AN, Selladurai S (2015) Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173:290–301CrossRef
    5.Nithya VD, Pandia K, Lee YS, Selvan RK (2015) Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim Acta 167:97–104CrossRef
    6.Xu CJ, Kang FY, Li BH, Du HD (2010) Recent progress on manganese dioxide based supercapacitors. J Mater Res 25:1421–1432CrossRef
    7.Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRef
    8.Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ Sci 4:2915–2921CrossRef
    9.Lei ZB, Zhang JT, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160CrossRef
    10.Xu CL, Zhao YQ, Yang GW, Li FS, Li HL (2009) Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem Commun 2:7575–7577CrossRef
    11.Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727CrossRef
    12.He YB, Li GR, Wang ZL, Su CY, Tong YX (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4:1288–1292CrossRef
    13.Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: effects of physisorbed water and proton conduction. Electrochim Acta 53:4607–4614CrossRef
    14.Wang GX, Tang QQ, Bao H, Li XW, Wang GC (2013) Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J Power Sources 241:231–238CrossRef
    15.Ranjusha R, Nair AS, Ramakrishna S, Anjali P, Sujith K, Subramanian KRV, Sivakumar N, Kim TN, Nair SV (2012) Ultrafine MnO2 nanowire based high performance thin film rechargeable electrodes: effect of surface morphology, electrolytes and concentrations. J Mater Chem 22:20465–20471CrossRef
    16.Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214CrossRef
    17.Kai K, Kobayashi Y, Yamada Y, Miyazaki K, Abe T, Uchimoto Y, Kageyama H (2012) Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J Mater Chem 22:14691–14695CrossRef
    18.Xia H, Feng JK, Wang HL, Lai MO, Lu L (2010) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sources 195:4410–4413CrossRef
    19.Ni JP, Lu WC, Zhang LM, Yue BH, Shang XF, Lv Y (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem C 113:54–67CrossRef
    20.Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRef
    21.Yan J, Fan Z, Wei T, Qian W, Zhang W, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRef
    22.Ramezani M, Fathi M, Mahboub F (2015) Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim Acta 174:345–355CrossRef
    23.Zhang JT, Zhao XS (2013) A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons. Carbon 52:1–9CrossRef
    24.Zhang SW, Peng C, Ng KC, Chen GZ (2010) Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochim Acta 55:7447–7453CrossRef
    25.Liu Y, Yan D, Li YH, Wu ZG, Zhuo RF, Li SK, Feng JJ, Wang J, Yan PX, Geng ZR (2014) Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim Acta 117:528–533CrossRef
    26.Zhang YF, Zhang CX, Huang GX, Xing BL, Duan YL (2015) Synthesis and capacitive properties of manganese oxide nanoparticles dispersed on hierarchical porous carbons. Electrochim Acta 166:107–116CrossRef
    27.Liu Z, Tan XL, Gao X, Song LH (2014) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820CrossRef
    28.Lei Y, Fournier C, Pascal JL, Favier F (2008) Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors. Microporous Mesoporous Mater 110:167–176CrossRef
    29.Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC (2014) A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application. Mater Lett 119:135–139CrossRef
    30.Hu C-C, Tsou T-W (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4:105–109CrossRef
    31.Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRef
    32.Pinaud BA, Chen Z, Abram DN, Jaramillo TF (2011) Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry. J Phys Chem C 115:11830–11838CrossRef
    33.Wei WF, Cui XX, Chen WX, Ivey DG (2008) Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J Phys Chem C 112:15075–15083CrossRef
    34.Xiao W, Xia H, Fuh JYH, Lu L (2009) Electrochemical synthesis and supercapacitive properties of ε-MnO2 with porous/nanoflaky hierarchical architectures batteries and energy storage. J Electrochem Soc 156:A627–A633CrossRef
    35.Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRef
    36.Muller F, Masi R, Reinicke D, Steiner P, Hufner S, Stowe K (2002) Epitaxial growth of MnO/Ag(001) films. Surf Sci 520:158–172CrossRef
    37.Sopcic S, Peter R, Petravic M, Mandic Z (2013) New insights into the mechanism of pseudocapacitance deterioration in electrodeposited MnO2 under negative potentials. J Power Sources 240:252–257CrossRef
    38.Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZA (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef
    39.Jiang RR, Huang T, Tang Y, Liu JL, Xue LG, Zhuang JH, Yu AS (2009) Factors influencing MnO2/multi-walled carbon nanotubes composite’s electrochemical performance as supercapacitor electrode. Electrochim Acta 54:7173–7179CrossRef
    40.Jiang Y, Ling XT, Jiao Z, Li L, Ma QL, Wu MH, Chu YL, Zhao B (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253CrossRef
    41.Gassa LM, Mishima HT, Mishima BAL, Vilche JR (1997) An electrochemical impedance spectroscopy study of electrodeposited manganese oxide films in borate buffers. Electrochim Acta 42:1717–1723CrossRef
    42.Lee H-Y, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223CrossRef
    43.Wu M, Snook GA, Chen GZ, Fray DJ (2004) Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem Commun 6:499–540CrossRef
    44.Xin HK, Fu WQ, Gang ZX, Lei WX (2006) Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A1568–A1574CrossRef
    45.Chen Y, Wang J-W, Shi X-C, Chen BZ (2013) Pseudocapacitive characteristics of manganese oxide anodized from manganese coating electrodeposited from aqueous solution. Electrochim Acta 109:678–683CrossRef
    46.Chun S-E, Pyun S-I, Lee G-J (2006) A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution. Electrochim Acta 51:6479–6484CrossRef
    47.Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:444–450CrossRef
    48.Zhang G, Li W, Xie K, Yu F, Huang H (2013) A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv Funct Mater 23:3675–3681CrossRef
  • 作者单位:Ya Chen (1) (2)
    Wen-Qing Qin (1)
    Jia-Wei Wang (2)
    Bai-Zhen Chen (2)

    1. School of Resource Processing and Biological Engineering, Central South University, Changsha, 410083, China
    2. School of Metallurgy and Environment, Central South University, Changsha, 410083, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8838
文摘
Nanoflake MnO2@carbon fiber coaxial nanocables were fabricated by a facile electrochemical deposition-oxidation route. The morphology, structure, composition, and pseudocapacitive performance of the obtained composite material were evaluated by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge measurements. The results show that the nanoflake MnO2 on the carbon fibers is highly amorphous and hydrous. The nanostructured material shows nearly symmetrical and rectangular CV curves in the scan-rate range from 2 to 50 mV s−1. When used as electrodes for supercapacitors, the material shows a capacitance of 511.8 F g−1 at 1 A g−1 (based on the mass of MnO2), excellent high-rate capability, and cycling stability. Keywords Electrochemical capacitor Supercapacitor Carbon fiber MnO2 Composite

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700