用户名: 密码: 验证码:
Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method
详细信息    查看全文
  • 作者:Xiaowei Fu ; Zhimeng Liu ; Bo Wu ; Jiliang Wang…
  • 关键词:Composite phase change material ; Thermal energy storage ; Stearic acid ; Thermal properties
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1173-1181
  • 全文大小:1,035 KB
  • 参考文献:1.Sanchez L, Sanchez P, Lucas A. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci. 2007;285:1377–85.CrossRef
    2.Li W, Song G, Tang G, Chu X, Ma S, Liu C. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy. 2010;36:785–91.CrossRef
    3.Giro-Paloma J, Konu klu Y, Fernandez A. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy. 2015;112:300–9.CrossRef
    4.He F, Wang X, Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy. 2015;74:689–98.CrossRef
    5.Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.CrossRef
    6.Fang X, Fan L, Ding Q, Yao X, Wu Y, Hou J, Wang X, Yu Z, Chneg G, Hu Y. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag. 2014;80:103–9.CrossRef
    7.Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag. 2006;47:303–10.CrossRef
    8.Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27:1271–7.CrossRef
    9.Wang L, Meng D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage. Appl Energy. 2010;87:2660–5.CrossRef
    10.Tyagi V, Kaushik S, Tyagi S, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15:1373–91.CrossRef
    11.Sun Z, Zhang Y, Zheng S, Park Y, Frost R. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim Acta. 2013;558:16–21.CrossRef
    12.Sanchez L, Sanchez P, Lucas A. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci. 2007;285:1377–85.CrossRef
    13.Song Q, Li Y, Xing J, Hu J, Marcus Y. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer. 2007;48:3317–23.CrossRef
    14.Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.CrossRef
    15.Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.CrossRef
    16.Xu B, Li Z. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy. 2014;72:371–80.CrossRef
    17.Li M, Wu Z, Kao H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials. Sol Energy Mater Sol Cells. 2011;95:2412–6.CrossRef
    18.Li M, Kao H, Wu Z, Tao J. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials. Appl Energy. 2011;88:1606–12.CrossRef
    19.Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy. 2011;88:3125–32.CrossRef
    20.Sari A, Bicer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs. Sol Energy Mater Sol Cells. 2012;101:114–22.CrossRef
    21.Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:1647–53.CrossRef
    22.Fu X, Liu Z, Xiao Y, Wang J, Lei J. Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2015;104:244–9.CrossRef
    23.Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37.CrossRef
    24.Sari A, Alkan C, Altintas A. Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl Therm Energy. 2014;73:1160–8.CrossRef
    25.Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew. Renew Sustain Energy Rev. 2014;29:482–98.CrossRef
    26.Zhou D, Zhao C, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.CrossRef
    27.Zhang X, Fan Y, Tao X, Yick K. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interface Sci. 2005;281:299–306.CrossRef
    28.Karaipekli A, Sari A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83:323–32.CrossRef
    29.Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manag. 2011;52:3275–81.CrossRef
    30.Zhou X, Xiao H, Feng J. Preparation and thermal properties of paraffin/porous silica ceramic composite. Colloid Polym Sci. 2009;69:1246–9.
    31.Mei D, Zhang B, Liu R, Zhang Y, Liu J. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:2772–7.CrossRef
    32.Karaipekli A, Sari A. Capric–myristic acid/vermiculite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33:2599–605.CrossRef
    33.Rozanna D, Salmiah A, Chuah T, Medyan R, Thomas Choog SY, Saari M. A study on thermal characteristics of phase change material (PCM) in gypsum board for building application. J Oil Palm Res. 2005;17:41–6.
    34.Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9.CrossRef
    35.Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120:1679–88.CrossRef
  • 作者单位:Xiaowei Fu (1)
    Zhimeng Liu (1)
    Bo Wu (1)
    Jiliang Wang (2)
    Jingxin Lei (1)

    1. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
    2. School of Chemistry Science and Engineering, Yunnan University, Kunming, 650091, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Stearic acid/diatomite composite form-stable phase change materials (PCMs) have been prepared by using a direct impregnation method without vacuum treatment. The surface morphology, chemical compatibility, thermal properties and thermal stability were characterized by scanning electron microscopy, Fourier transform infrared spectrometer and X-ray diffraction (XRD), differential scanning calorimeter and thermogravimetric analysis (TG), respectively. The results show that there are only physical interactions between stearic acid and diatomite in composite PCM. XRD analysis reveals that crystal type is not affected by composite technology of SA/diatomite composite form-stable PCM with decrease in crystal size due to the limited pores in diatomite. The melting and freezing temperatures of stearic acid/diatomite composite, respectively, are 52.3 and 48.4 °C. The latent heat of SA/diatomite composite reaches 57.1 J g−1, potential to be used in a practical application. TG result indicates that the decomposition of SA/diatomite composite starts at 192 °C, implying that the SA/diatomite has a good thermal stability. Keywords Composite phase change material Thermal energy storage Stearic acid Thermal properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700