用户名: 密码: 验证码:
Synthesis, characterization, and electrochemical properties of Li2Mn1-x Fe x (PO3)4 cathode material for lithium-ion batteries
详细信息    查看全文
  • 作者:Danlin Yan ; Yanming Zhao ; Youzhong Dong
  • 关键词:Li ; ion batteries ; Cathode material ; Fe substitution ; Solid solutions
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:337-344
  • 全文大小:2,582 KB
  • 参考文献:1.Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for li-ion and li batteries. Chem Mater 22:691–714CrossRef
    2.Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Eletrochem Soc 148:A224–A229CrossRef
    3.Aravindan V, Gnanaraj J, Lee YS, Madhavi S (2013) LiMnPO4—a next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539CrossRef
    4.Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432CrossRef
    5.Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8V electrode material for lithium batteries. Eletrochem Solid-State Lett 3:178–179CrossRef
    6.Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
    7.Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef
    8.Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J (2015) LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance li-ion batteries. Electrochim Acta 153:385–392CrossRef
    9.Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137CrossRef
    10.Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masqueliera C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M=Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921CrossRef
    11.Lee SH, Park SS (2012) Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater 24:3550–3557CrossRef
    12.Tamaru M, Barpanda P, Yamada Y, Nishimura S, Yamada A (2012) Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode. J Mater Chem 22:24526–24529CrossRef
    13.Murashova EV, Chudinova NN (2001) Synthesis and crystal structures of lithium polyphosphates, LiPO3, Li4H(PO3)5, and LiMn(PO3)3. Crystallography Reports 46:942–947CrossRef
    14.Averbuch-Pouchot MT, Durif A (1972) Crystalographic data on two lithium-manganese(II) polyphosphates, LiMn(PO3)3 and Li2Mn(PO3)4. J Appl Crystallogr 5:307–308CrossRef
    15.Moutataouia M, Lamire M, Saadi M, Ammari LE (2013) Dilithium manganese(II) catena-tetrakis(polyphosphate), Li2Mn(PO3)4. Acta Crystallogr Sect E: Struct Rep Online 70:i1–i1CrossRef
    16.Zhou H, Upreti S, Chernova NA, Hautier G, Ceder G, Whittingham MS (2011) Iron and manganese pyrophosphates as cathodes for lithium-ion batteries. Chem Mater 23:293–300CrossRef
    17.Larson AC, Von Dreele RB (2004) Los Alamos National Laboratory Report LAUR 86–748
    18.Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRef
    19.Werner PE (1976) On the determination of unit-cell dimensions from inaccurate powder diffraction data. J Appl Cryst 9(Pt.3):216–219CrossRef
    20.Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRef
    21.Furuta N, Nishimura S, Barpanda P, Yamada A (2012) Fe3+/Fe2+ redox couple approaching 4V in Li2–x(Fe1–yMny)P2O7 pyrophosphate cathodes. Chem Mater 24:1055–1061CrossRef
    22.Muslim A, Ma T, Su Z, Nijat I (2014) Structural feature and electrochemical performance of h-LiMnBO3 and its carbon coated material prepared by microwave synthesis. Rare Metal Mater Eng 43:2095–2099CrossRef
    23.Kosova NV, Tsapina AM, Slobodyuk AB, Petrov SA (2015) Structure and electrochemical properties of mixed transition-metal pyrophosphates Li2Fe1-yMnyP2O7 (0 ≤ y ≤ 1). Electrochim Acta 174:1278–1289CrossRef
    24.Kobayashi G, Yamada A, Nishimura S, Kanno R, Kobayashi Y, Seki S, Ohno Y, Miyashiro H (2009) Shift of redox potential and kinetics in Lix(MnyFe1−y)PO4. J Power Sources 189:397–401CrossRef
    25.Gutierrez A, Benedek NA, Manthiram A (2013) Crystal-chemical guide for understanding redox energy variations of M2+/3+ couples in polyanion cathodes for lithium-ion batteries. Chem Mater 25:4010–4016CrossRef
    26.Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRef
    27.Liu JL, Jiang RR, Wang XY, Huang T, Yu AS (2009) The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values. J Power Sources 194:536–540CrossRef
    28.Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials. J Power Sources 174:689–694CrossRef
    29.Shenouda AY, Liu Hua-K (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. 157: A1183–A1187
  • 作者单位:Danlin Yan (1)
    Yanming Zhao (1) (2)
    Youzhong Dong (1)
    Zhiyong Liang (1)
    Xinghao Lin (1)

    1. School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, China
    2. School of Physics, South China University of Technology, Guangzhou, 510640, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Li2Mn1-x Fe x (PO3)4 (x = 0, 0.2, 0.4, 0.6, 0.7) solid solution phase has been successfully prepared via solid-state reaction. The Rietveld refinement results indicate that the Li2Mn1-x Fe x (PO3)4 (x = 0, 0.2, 0.4, 0.6, 0.7) solid solutions with orthorhombic structure can be obtained and the lattice parameters (including a, b, c, and V) decrease with the increasing of Fe concentration. Partial substitution of manganese with iron enhances the electrochemical performance; there, the discharge-specific capacity of the samples obviously increases from 21 mAh/g for x = 0 to 59 mAh/g for x = 0.7, which is 85 % capacity of that one lithium removal. The cyclic voltammetric (CV) curves present the Mn2+/Mn3+ redox couple situated at 4.6 and 1.8 V and Fe2+/Fe3+ redox couple located at 4.3 and 2.3 V, which can be observed in cathodic and anodic sweeps. Such a low discharge potential value for M2+/M3+ redox couple may be attributed to the zigzag [(PO3)1−] n chains in this structure. Keywords Li-ion batteries Cathode material Fe substitution Solid solutions

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700