用户名: 密码: 验证码:
Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells—a causal table for lithium-ion battery performance
详细信息    查看全文
  • 作者:Guoqiang Cai ; Ka Y. Fung ; Ka M. Ng ; Ka L. Chu…
  • 关键词:Li ; ion battery ; Cathode material ; LiFePO4 ; Particle size ; Morphology ; Causal table
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:379-387
  • 全文大小:1,185 KB
  • 参考文献:1.Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
    2.Lu K (2014) Materials in energy conversion, harvesting, and storage. Wiley
    3.Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172CrossRef
    4.Joachin H, Kaun TD, Zaghib K, Prakash J (2009) Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J Electrochem Soc 156:A401–A406CrossRef
    5.Prosini PP, Carewska M, Scaccia S, Wisniewski P, Passerini S, Pasquali M (2002) A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J Electrochem Soc 149:A886–A890CrossRef
    6.Wang L, Liang GC, Ou XQ, Zhi XK, Zhang JP, Cui JY (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189:423–428CrossRef
    7.Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–8:503–507CrossRef
    8.Prosini PP, Zane D, Pasquali M (2001) Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim Acta 46:3517–3523CrossRef
    9.Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef
    10.Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRef
    11.Ellis B, Kan WH, Makahnouk WRM, Nazar LF (2007) Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem 17:3248–3254CrossRef
    12.Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders: the key to superior energy density. Electrochem Solid-State Lett 9:A352–A355CrossRef
    13.Pröll J, Kohler R, Torge M, Ulrich S, Ziebert C, Bruns M, Seifert HJ, Pfleging W (2011) Laser microstructuring and annealing processes for lithium manganese oxide cathodes. Appl Surf Sci 257:9968–9976CrossRef
    14.Kohler R, Besser H, Hagen M, Ye J, Ziebert C, Ulrich S, Proell J, Pfleging W (2011) Laser micro-structuring of magnetron-sputtered SnOX thin films as anode material for lithium ion batteries. Microsyst Technol 17:225–232CrossRef
    15.Islam MS, Driscoll DJ, Fisher CJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092CrossRef
    16.Nishimura S-I, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Experimental visualization of lithium diffusion in LiXFePO4. Nat Mater 7:707–711CrossRef
    17.Wang L, He X, Sun W, Wang J, Li Y, Fan S (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12:5632–5636CrossRef
    18.Pei B, Yao H, Zhang W, Yang Z (2012) Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. J Power Sources 220:317–323CrossRef
    19.Liu J, Wang Z, Zhang G, Liu Y, Yu A (2013) Size-controlled synthesis of LiFePO4/C composites as cathode materials for lithium ion batteries. Int J Electrochem Sci 8:2378–2387
    20.Xiang H, Zhang D, Jin Y, Chen C, Wu J, Wang H (2011) Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. J Mater Sci 46:4906–4912CrossRef
    21.Mathew V, Alfaruqi MH, Gim J, Song J, Kim S, Ahn D, Kim J (2014) Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Mater Charact 89:93–101CrossRef
    22.Mohapatra D, Hong-In K, Nam C-W, Park K-H (2007) Liquid–liquid extraction of aluminium(III) from mixed sulphate solutions using sodium salts of Cyanex 272 and D2EHPA. Sep Puri Technol 56:311–318CrossRef
    23.Yang S, Zhou X, Zhang J, Liu Z (2010) Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. J Mater Chem 20:8086–8091CrossRef
    24.Liu P, Wang J, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2010) Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc 157:A499–A507CrossRef
    25.Fey GT-K, Chen YG, Kao H-M (2009) Electrochemical properties of LiFePO4 prepared via ball-milling. J Power Sources 189:169–178CrossRef
    26.Oh SW, Bang HJ, Myung S-T, Bae YC, Lee S-M, Sun Y-K (2008) The effect of morphological properties on the electrochemical behavior of high tap density C – LiFePO4 prepared via coprecipitation. J Electrochem Soc 155:A414–A420CrossRef
    27.Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sources 160:516–522CrossRef
    28.Green D, Perry R (2007) Perry’s Chemical Engineers’ Handbook. Eighth Edition, McGraw-Hill Education
    29.Lim J, Kim D, Mathew V, Ahn D, Kang J, Kang S-W, Kim J (2011) Plate-type LiFePO4 nanocrystals by low temperature polyol-assisted solvothermal reaction and its electrochemical properties. J Alloys Compd 509:8130–8135CrossRef
    30.Kim D-H, Kim J (2007) Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids 68:734–737CrossRef
    31.Gu H, Chang C, Barrera-Godinez J, O’keefe T (2000) Preliminary design of a solvent extraction process for the galvanic stripping of iron from D2EHPA. Miner Metall Proc (USA) 17:16–22
    32.Paul BJ, Kang S-W, Gim J, Song J, Kim S, Mathew V, Kim J (2014) Nucleation and growth controlled polyol synthesis of size-focused nanocrystalline LiFePO4 cathode for high performance Li-ion batteries. J Electrochem Soc 161:A1468–A1473CrossRef
    33.Oh SW, Myung S-T, Bang HJ, Yoon CS, Amine K, Sun Y-K (2009) Nanoporous structured LiFePO4 with spherical microscale particles having high volumetric capacity for lithium batteries. Electrochem Solid-State Lett 12:A181–A185CrossRef
    34.Chen S-Y, Gao B, Su L-H, Mi C-H, Zhang X-G (2009) Electrochemical properties of LiFePO4/C synthesized using polypyrrole as carbon source. J Solid State Electrochem 13:1361–1366CrossRef
    35.Maccario M, Croguennec L, Weill F, Le Cras F, Delmas C (2008) C-containing LiFePO4 materials—part II: electrochemical characterization. Solid State Ionics 179:2383–2389CrossRef
    36.Yu F, Zhang J, Yang Y, Song G (2009) Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. J Power Sources 189:794–797CrossRef
    37.Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J Power Sources 195:3661–3667CrossRef
    38.Zhao JM, Shen XY, Deng FL, Wang FC, Wu Y, Liu HZ (2011) Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep Purif Technol 78:345–351CrossRef
    39.Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY (2005) Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J Electrochem Soc 152:A716–A720CrossRef
    40.Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem Commun 9:2778–2783CrossRef
    41.Wang Y, Wang J, Yang J, Nuli Y (2006) High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O. Adv Functional Mater 16:2135–2140CrossRef
    42.Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid-State Lett 8:A484–A487CrossRef
    43.Kim D-H, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 9:A439–A442CrossRef
    44.Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52:1472–1476CrossRef
    45.Kim J-K, Cheruvally G, Choi J-W, Kim J-U, Ahn J-H, Cho G-B, Kim K-W, Ahn H-J (2007) Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material. J Power Sources 166:211–218CrossRef
    46.Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253–A257CrossRef
    47.Wang D, Li H, Wang Z, Wu X, Sun Y, Huang X, Chen L (2004) New solid-state synthesis routine and mechanism for LiFePO4 using LiF as lithium precursor. J Solid State Chem 177:4582–4587CrossRef
  • 作者单位:Guoqiang Cai (1)
    Ka Y. Fung (1)
    Ka M. Ng (1)
    Ka L. Chu (2)
    Kawai Hui (2)
    Lixing Xue (2)

    1. Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
    2. CN Innovations Limited, 1 Lockhart Road, Wan Chai, Hong Kong
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
LiFePO4 (LFP) is widely used as a cathode material for lithium-ion batteries (LIBs). While there exist many studies of the effect of particle size, purity, morphology, degree of agglomeration, and carbon coating on battery performance, it is not clear how these parameters are optimized in a commercial product. This paper aims at developing a causal table which relates the particle qualities to battery performance. A critical assessment of six commercial LFP products was performed in terms of material characteristics and the electrochemical performance of the corresponding button cells. One of the LFP samples with plate-like morphology, small particle size (0.15 × 0.4 × 0.6 μm), and around 2.5 wt% carbon coating had the highest specific capacity (164.9 mAh g−1 at 0.1 C) and rate capability (88.5 % at 1.5 C). The results are in general agreement with the relations captured in the causal table, verifying that it can be used to guide product development. Keywords Li-ion battery Cathode material LiFePO4 Particle size Morphology Causal table

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700