用户名: 密码: 验证码:
Phase Transitions and Atomic-Scale Migration During the Preoxidation of a Titania/Ferrous Oxide Solution
详细信息    查看全文
  • 作者:Zhen-Yang Wang ; Jian-Liang Zhang ; Xiang-Dong Xing ; Zheng-Jian Liu ; Ya-Peng Zhang
  • 刊名:JOM Journal of the Minerals, Metals and Materials Society
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:68
  • 期:2
  • 页码:656-667
  • 全文大小:2,972 KB
  • 参考文献:1.J.A. Bowles, M.J. Jackson, T.S. Berquó, P.A. Sølheid, and J.S. Gee, Nat. Commun. 4, 1916 (2013).CrossRef
    2.T. Katsura, Pac. Sci. 18, 223 (1962).
    3.J.B. Wright, N. Z. J. Geol. Geophys. 7, 424 (1964).CrossRef
    4.P. Ayyub, M. Multani, M. Barma, V.R. Palkar, and R. Vijayaraghavan, J. Phys. C Solid State Phys. 21, 2229 (1988).CrossRef
    5.R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).CrossRef
    6.C. Pascal, J.L. Pascal, and F. Favier, Chem. Mater. 11, 141 (1999).CrossRef
    7.J.L. Dormann, N. Viart, J.L. Rehspringer, A. Ezzir, and D. Niznansky, Hyperfine Interact. 112, 89 (1998).CrossRef
    8.C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio, J. Phys. Chem. B 102, 7721 (1998).CrossRef
    9.J.B. Goodenough and A.L. Loeb, Phys. Rev. 98, 391 (1955).CrossRef
    10.B. Gillot, Vib. Spectrosc. 6, 127 (1994).CrossRef
    11.S. Akimoto, J. Geomagn. Geoelectr. 6, 1 (1954).CrossRef
    12.S. Akimoto, T. Katsura, and M. Yoshida, J. Geomagn. Geoelectr. 9, 165 (1957).CrossRef
    13.W. Oreilly and S.K. Banerjee, Phys. Lett. 3, 237 (1965).CrossRef
    14.B.A. Wechsler, D.H. Lindsley, and C.T. Prewitt, Am. Mineral. 69, 754 (1984).
    15.Z. Kakol, J. Sabol, and J.M. Honig, Phys. Rev. B Condens. Matter Mater. Phys. 43, 649 (1991).CrossRef
    16.H.H. Hamdeh, K. Barghout, J.C. Ho, P.M. Shand, and L.L. Miller, J. Magn. Magn. Mater. 191, 72 (1999).CrossRef
    17.F. Bosi, U. Halenius, and H. Skogby, Am. Mineral. 94, 181 (2009).CrossRef
    18.C.I. Pearce, C.M.B. Henderson, N.D. Telling, R.A.D. Pattrick, J.M. Charnock, V.S. Coker, E. Arenholz, F. Tuna, and G. van der Laan, Am. Mineral. 95, 425 (2010).CrossRef
    19.E. Park and O. Ostrovski, ISIJ Int. 44, 74 (2004).CrossRef
    20.E. Park and O. Ostrovski, ISIJ Int. 44, 999 (2004).CrossRef
    21.E. Park and O. Ostrovski, ISIJ Int. 43, 1316 (2003).CrossRef
    22.R. Paunova, Metall. Mater. Trans. B 33, 633 (2002).CrossRef
    23.R.J. Longbottom, O. Ostrovski, J. Zhang, and D. Young, Metall. Mater. Trans. B 38, 175 (2007).CrossRef
    24.Y. Wang and Z. Yuan, Int. J. Miner. Process. 81, 133 (2006).CrossRef
    25.G.L. Schwebel, D. Filippou, G. Hudon, M. Tworkowski, A. Gipperich, and W. Krumm, Appl. Energy 113, 1902 (2014).CrossRef
    26.C.S. Kucukkaragoz and R.H. Eric, Miner. Eng. 19, 334 (2006).CrossRef
    27.Y. Wang, Z. Yuan, Z. Guo, Q. Tan, Z. Li, and W. Jiang, Trans. Nonferrous Met. Soc. China 18, 962 (2008).CrossRef
    28.G.D. McAdam, Ironmak. Steelmak. 1, 138 (1974).
    29.G.D. McAdam, R.E.A. Dall, and T. Marshall, N. Z. J. Sci. 12, 669 (1969).
    30.G.D. McAdam, R.E.A. Dall, and T. Marshall, N. Z. J. Sci. 12, 649 (1969).
    31.X. Wei, L.X. Gang, Z.X. Li, W.X. Mei, and D.W. Zhong, Trans. Nonferrous Met. Soc. China 23, 2439 (2013).CrossRef
    32.L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, ISIJ Int. 46, 458 (2006).CrossRef
    33.L. Chen, J. Li, R.O. Rye, W.M. Benzel, H.A. Lowers, and M. He, Mineral. Petrol. 107, 487 (2013).CrossRef
    34.A. Hekmat-Ardakan and F. Ajersch, Acta Mater. 58, 3422 (2010).CrossRef
    35.G. Xiang Ping, X. De Xian, W. Xiang Bin, Z. Gu Chang, L. Jian Qing, H. Kenich, and H. Ji Wu, Eur. J. Mineral. 25, 177 (2013).CrossRef
    36.A.J. Wall, R. Mathur, J.E. Post, and P.J. Heaney, Ore Geol. Rev. 42, 62 (2011).CrossRef
    37.Y. Singh, R. Viswanathan, P.S. Parihar, and P.B. Maithani, J. Geol. Soc. India 81, 79 (2013).CrossRef
    38.V.M. Kazanskii, J. Eng. Phys. 10, 393 (1966).CrossRef
    39.N. Li, P. Hu, X. Zhang, Y. Liu, and W. Han, Corros. Sci. 73, 44 (2013).CrossRef
    40.M. Kim, H. Lee, and Y. Kang, Metall. Mater. Trans. B 45, 131 (2014).CrossRef
    41.B. Gillot and F. Jemmali, J. Mater. Sci. 21, 4436 (1986).CrossRef
    42.P.Á. Szilágyi, J. Madarász, E. Kuzmann, A. Vértes, G. Molnár, A. Bousseksou, V.K. Sharma, and Z. Homonnay, Thermochim. Acta 479, 53 (2008).CrossRef
    43.J.P. Sanders and P.K. Gallagher, Thermochim. Acta 406, 241 (2003).CrossRef
    44.J.P. Sanders and P.K. Gallagher, J. Therm. Anal. Calorim. 72, 777 (2003).CrossRef
    45.K. Li, X. Huang, C. Fleischmann, G. Rein, and J. Ji, Energy Fuel. 28, 6130 (2014).CrossRef
  • 作者单位:Zhen-Yang Wang (1)
    Jian-Liang Zhang (1)
    Xiang-Dong Xing (2)
    Zheng-Jian Liu (1)
    Ya-Peng Zhang (1)
    Xing-Le Liu (1)
    Yi-Ran Liu (1)

    1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
    2. School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Nanotechnology
    Crystallography
  • 出版者:Springer Boston
  • ISSN:1543-1851
文摘
The non-isothermal preoxidation of the titania/ferrous oxide solution (TFOS) was investigated between 300°C and 1200°C. To explore the TFOS preoxidation mechanism, the phase transitions, crystal structure behavior, subreactions, and atomic-scale migration and enrichment of the TFOS during preoxidation were studied. Two different titanium and iron solutions were distinguished by scanning electron microscopy analysis. The phase transitions from titanomagnetite (TTM) to titanohematite to pseudobrookite (PSB) were indicated by the separation and enrichment of Ti and Fe, which migrated into PSB and hematite, respectively. This occurred alongside the generation and destruction of FeTiO3. Multiple local maxima and shoulders were observed in the double-derivative thermogravimetric curves during the preoxidation process, indicating the existence and initial reaction temperatures of five stages of subreactions. Compared with the theoretical mass gain (3.28 wt.%), only 80.8 at.% of the Fe2+ was oxidized to Fe3+, leaving unoxidized TTM in the solid solution during non-isothermal oxidation at 1200°C. The concentration of Ti gradually increased in the lamellar structures. However, Fe, Al, and O were mostly restricted to the homogeneous regions. The segregation of Mg only became obvious when TFOS was oxidized at high temperatures. The enrichment reduced the impact of Ti when O migrated during the reduction process, thus, enhancing the reducibility of the TFOS after preoxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700