用户名: 密码: 验证码:
Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation
详细信息    查看全文
  • 作者:En-Xu Wang ; Ming-Zhu Ding ; Qian Ma ; Xiu-Tao Dong ; Ying-Jin Yuan
  • 关键词:Synthetic microbial consortium ; Reorganization ; One ; step fermentation ; Interaction ; Metabolomics
  • 刊名:Microbial Cell Factories
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 全文大小:4,582 KB
  • 参考文献:1.Teague BP, Weiss R. Synthetic communities the sum of parts. Science. 2015;349:924–5.CrossRef
    2.Brune KD, Bayer TS. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol. 2012;3:203.CrossRef
    3.Shou W, Ram S, Vilar JMG. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA. 2007;104:1877–82.CrossRef
    4.Chuang JS, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science. 2009;323:272–5.CrossRef
    5.Waite AJ, Shou W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc Natl Acad Sci USA. 2012;109:19079–86.CrossRef
    6.Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Microbiol Biotechnol. 2010;76(22):7514–20.
    7.Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA. 2013;110:14592–7.CrossRef
    8.Rosenbaum MA, Bar HY, Beg QK, Segrèc D, Booth J, Cotta MA, Angenent LT. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresour Technol. 2011;102:2623–8.CrossRef
    9.Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015. doi:10.​1038/​nbt.​3095 .
    10.Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol. 2012;8:26–35.CrossRef
    11.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.CrossRef
    12.Ma Q, Zhou J, Zhang WW, Meng XX, Sun JW, Yuan YJ. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS One. 2011;6:e26108.CrossRef
    13.Du J, Zhou J, Xue J, Song H, Yuan YJ. Metabolomic profiling elucidates community dynamics of the Ketogulonigenium vulgare–Bacillus megaterium consortium. Metabolomics. 2012;8:960–73.CrossRef
    14.Zhou J, Yi H, Wang LL, Zhang WW, Yuan YJ. Metabolomic analysis of the positive effects on Ketogulonigenium vulgare growth and 2-keto-l -gulonic acid production by reduced glutathione. OMICS. 2012;16:387–96.CrossRef
    15.Ding MZ, Zou Y, Song H, Yuan YJ. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonigenium vulgare. PLoS One. 2014;9:e94889.CrossRef
    16.Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev. 2014;43:6954–81.CrossRef
    17.Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR. Emergent genetic oscillations in a synthetic microbial consortium. Science. 2015;349:986–9.CrossRef
    18.Agapakis CM, Boyle PM, Silver PA. Natural strategies for the spatial optimizationof metabolism in synthetic biology. Nat Chem Biol. 2012;8:527–35.CrossRef
    19.Ding MZ, Zhou X, Yuan YJ. Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics. 2010;6:42–55.CrossRef
    20.Ding MZ, Wang X, Yang Y, Yuan YJ. Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics. 2012;8:232–43.CrossRef
    21.Xia J, Wishart DS. Web-based inference of biological patterns functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6:743–60.CrossRef
    22.Takagi Y, Sugisawa T, Hoshino T. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Appl Microbil Biotechnol. 2010;86:469–80.CrossRef
    23.Soemphol W, Toyama H, Moonmangmee D, Adachi O, Matsushita K. L-Sorbose reductase and its transcriptional regulator involved in l -sorbose utilization of Gluconobacter frateurii. J Bacteriol. 2007;189:4800–8.CrossRef
    24.Ge X, Zhao Y, Hou W, Zhang WC, Chen WW, Wang JH, et al. Complete Genome Sequence of the Industrial Strain Gluconobacter oxydans H24. Genome Announc. 2013;1:e00003–13.CrossRef
    25.Liu L, Chen K, Zhang J, Liu J, Chen J. Gelatin enhances 2-keto-l-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol. 2011;156:182–7.CrossRef
    26.Leduc S, Troostembergh JC, Lebeault JM. Folate requirements of the 2-keto-l -gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in l -sorbose/CSL medium. Appl Microbiol Biotechnol. 2004;65:163–7.CrossRef
    27.Cai L, Yuan MQ, Li ZJ, Chen JC, Chen GQ. Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-l -gulonic acid. J Biotechnol. 2012;157:320–5.CrossRef
    28.You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol. 2003;69:1499–503.CrossRef
    29.Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS One. 2008;3:e2623.CrossRef
  • 作者单位:En-Xu Wang (1) (2)
    Ming-Zhu Ding (1) (2)
    Qian Ma (1) (2)
    Xiu-Tao Dong (1) (2)
    Ying-Jin Yuan (1) (2)

    1. Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People’s Republic of China
    2. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Background In the industry, the conventional two-step fermentation method was used to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C, by three strains, namely, Gluconobacter oxydans, Bacillus spp. and Ketogulonicigenium vulgare. Despite its high production efficiency, the long incubation period and an additional second sterilization process inhibit the further development. Therefore, we aimed to reorganize a synthetic consortium of G. oxydans and K. vulgare for one-step fermentation of 2-KGA and enhance the symbiotic interaction between microorganisms to perform better.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700