用户名: 密码: 验证码:
The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model
详细信息    查看全文
  • 作者:Tianlun Huang ; Xuewei Song ; Xinyang Liu
  • 关键词:Tube hydroforming ; Loading path ; Multi ; objective robust optimization ; Dual response surface model
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:82
  • 期:9-12
  • 页码:1595-1605
  • 全文大小:929 KB
  • 参考文献:1.Ahmetoglu M, Altan T (2000) Tube hydroforming: state-of-the-art and future trends. J Mater Process Technol 98:25–33CrossRef
    2.Dohmann F, Hartl CH (1996) Hydroforming—a method to manufacture lightweight parts. J Mater Process Technol 60:669–676CrossRef
    3.Asnafi N (1999) Analytical modelling of tube hydroforming. Thin-Walled Struct 34:295–330CrossRef
    4.Asnafi N, Skogsgardh A (2000) Theoretical and experimental analysis of stroke-controlled tube hydroforming. J Mater Sci A279:95–110CrossRef
    5.Xu X, Li S, Zhang W, Lina Z (2009) Analysis of thickness distribution of square-sectional hydroformed parts. J Mater Process Technol 209:158–164CrossRef
    6.Manabe K, Amino M (2002) Effects of process parameters and material properties on deformation process in tube hydroforming. J Mater Process Technol 123:285–291CrossRef
    7.Carleer B, Kevie G, Winter L, Veldhuizen B (2000) Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 104:158–166CrossRef
    8.Fatemi A, Morovvati MR, Biglari FR (2013) The effect of tube material, microstructure, and heat treatment on process responses of tube hydroforming without axial force. Int J Adv Manuf Techonol 68:263–276CrossRef
    9.Yang B, Zhang W, Li SH (2006) Analysis and finite element simulation of the tube bulge hydroforming process. Int J Adv Manuf Techonol 29:453–458CrossRef
    10.Hwang YM, Lin TC, Chang WC (2007) Experiment on T-shape hydroforming with counter punch. J Mater Process Technol 192–193:243–248CrossRef
    11.Alaswad A, Benyounis KY, Olabi AG (2011) Finite element comparison of single and bi-layer tube hydroforming processes. Simul Model Pract Th 19:1584–1593CrossRef
    12.Yang JB, Heon BH, Sl O (2006) Design sensitivity analysis and optimization of the hydroforming process. J Mater Process Technol 113:666–672CrossRef
    13.Fann KJ, Hsiao PY (2003) Optimization of loading conditions for tube hydroforming. J Mater Process Technol 140:520–524CrossRef
    14.Li B, Nye TJ, Metzger DR (2006) Multi-objective optimization of forming parameters for tube hydroforming process based on the Taguchi method. Int J Adv Manuf Techonol 28:23–30CrossRef
    15.Abdessalem AB, Hami AE (2014) Global sensitivity analysis and multi-objective optimization of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Techonol 71:753–773CrossRef
    16.An H, Green DE, Johrendt J (2010) Multi-objective optimization and sensitivity analysis of tube hydroforming. Int J Adv Manuf Techonol 50:67–84CrossRef
    17.An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manuf Techonol 60:1017–1030CrossRef
    18.An H, Green DE, Johrendt J (2013) Multi-objective optimization of loading path design in multi-stage tube forming using MOGA. Int J Mater Form 6:125–135CrossRef
    19.Kadkhodayan M, Moghadam AE (2012) An investigation of the optimal load paths for the hydroforming of T-shaped tubes. Int J Adv Manuf Techonol 61:73–85CrossRef
    20.Kadkhodayan M, Moghadam AE (2013) Optimization of load paths in X- and Y-shaped hydroforming. Int J Mater Form 6:75–91CrossRef
    21.Aue-U-Lan Y, Ngaile G, Altan T (2004) Optimizing tube hydroforming using process simulation and experimental verification. J Mater Process Technol 146:137–143CrossRef
    22.Mirzaali M, Seyedkashi SMH, Liaghat GH, Moslemi Naeini H, Shojaee K, Moon YH (2012) Application of simulated annealing method to pressure and force loading optimization in tube hydroforming process. Int J Mech Sci 55:78–84CrossRef
    23.Mirzaali M, Liaghat GH, Moslemi Naeini H, Seyedkashi SMH, Shojaee K (2011) Optimization of tube hydroforming process using simulated annealing algorithm. Procedia Eng 10:3012–3019CrossRef
    24.Abedrabbo N, Worswick M, Mayer R, Riemsdijk I (2009) Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification. J Mater Process Technol 209:110–123CrossRef
    25.Li S, Yang B, Zhang W, Lin Z (2008) Loading path prediction for tube hydroforming process using a fuzzy control strategy. Mater Des 210:1110–1116CrossRef
    26.Teng B, Li K, Yuan S (2013) Optimization of loading path in hydroforming T-shape using fuzzy control algorithm. Int J Adv Manuf Techonol 69:1079–1086CrossRef
    27.Manabe K, Suetake M, Koyama H, Yang M (2006) Hydroforming process optimization of aluminum alloy tube using intelligent control technique. Int J Mach Tool Manuf 46:1207–1211CrossRef
    28.Di Lorenzo R, Ingarao G, Chinesta F (2009) A gradient-based decomposition approach to optimize pressure path and counter punch action in Y-shaped tube hydroforming operations. Int J Adv Manuf Technol 44:49–60CrossRef
    29.Ingarao G, Di Lorenzo R, Micari F (2009) Internal pressure counter punch action design in Y-shaped tube hydroforming processes: a multi-objective optimisation approach. Comput Struct 87:591–602CrossRef
    30.Imaninejad M, Subhash G, Loukus A (2005) Load path optimization of tube hydroforming process. Int J Mach Tools Manuf 45:1504–1514CrossRef
    31.Li B, Metzger DR, Nye TJ (2006) Reliability analysis of the tube hydroforming process based on forming limit diagram. Trans ASME 128:402–407
    32.Li B, Nye TJ, Metzger DR (2006) Improving the reliability of the tube-hydroforming process by the Taguchi method. Trans ASME 129:242–247
    33.Li B, Metzger DR, Nye TJ (2004) Reliability analysis of the tube hydroforming process using fuzzy sets theory. Transactions of the ASME 11-17
    34.Abdessalem AB, Pagnacco E, Hami AE (2013) Increasing the stability of T-shape tube hydroforming process under stochastic framework. Int J Adv Manuf Techonol 69:1343–1357CrossRef
    35.Ben Abdessalem A, El Hami A, Cherouat A (2010) Optimization of the tube hydroforming process using probabilistic constraints on failure modes. In: Proceedings of the tenth ICCST. Civil-Comp, Stirlingshire
    36.Kim J, Kang BS, Lee JK (2009) Statistical evaluation of forming limit in hydroforming process using plastic instability combined with FORM. Int J Adv Manuf Techonol 42:53–59CrossRef
    37.Kim J, Song WJ, Kang BS (2009) Probabilistic modeling of stress-based FLD in tube hydroforming process. Int J Mech Sci 23:2891–2902
    38.LS-DYNA (2006) Keyword user’s manual, vol 971. Livermore Software Technology Corporation, Livermore
    39.Ray P, Mac Donald BJ (2005) Experimental study and finite element analysis of simple X- and T
    anch tube hydroforming processes. Int J Mech Sci 47:1498–1518CrossRef
    40.Yeniay O, Unal R, Lepsch RA (2006) Using dual response surfaces to reduce variability in launch vehicle design: a case study. Reliab Eng Syst Saf 97:407–412CrossRef
    41.Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodeling techniques under multiple modeling criteria. Struct Multidisc Optim 23:1–13CrossRef
    42.Liu GR (2003) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton
    43.Jourdan A, Franco J (2010) Optimal Latin hypercube designs for the Kullback–Leibler criterion. AStA Adv Stat Anal 94:341–351CrossRef
    44.Sun G, Li G, Zhou S, Li H, Hou S, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidisc Optim 44:99–110CrossRef
    45.Yuan S, Yuan W, Wang X (2006) Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming. J Mater Process Technol 177:668–671CrossRef
    46.Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRef
    47.Chen BL (2002) Optimization theories and algorithms. Tsinghua University Press, Beijing
  • 作者单位:Tianlun Huang (1)
    Xuewei Song (1)
    Xinyang Liu (2)

    1. State Key Laboratory of Automobile Dynamic Simulation, Jilin University, Changchun, 130025, People’s Republic of China
    2. Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
In this study, a dual response surface model-based multi-objective robust optimization method is introduced to deal with the uncertainties in the tube hydroforming process. The objective of this study is to maximize the protrusion height and minimize the thinning ratio; meanwhile, the variations of the objectives should be minimized. A valid finite element model obtained from experimental result and LS-DYNA is employed to simulate the T-shape tube hydroforming process. To improve computation efficiency, radial basis function combined with Latin hypercube and orthogonal design sampling strategies is employed to construct dual response surface model, which are the mean and standard deviation response of the hydroforming process, respectively. The robust Pareto solutions can be obtained using NSGA-II; meanwhile, the ideal point method is used to obtain the most satisfactory solution from the Pareto solutions for the design engineers. As a conclusion, a significant improvement of the robustness can be achieved; however, the mean performance of the protrusion height has to be sacrificed. Keywords Tube hydroforming Loading path Multi-objective robust optimization Dual response surface model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700