用户名: 密码: 验证码:
Two Zinc Based Coordination Compounds Constructed from Two Azophenyl Ligands: Syntheses, Crystal Structure, and Photocatalytic Performance
详细信息    查看全文
  • 作者:Chong-Chen Wang ; Dao-Xin Xu ; Huan-Ping Jing…
  • 关键词:Coordination compound ; Thermal stability ; Optical energy gap ; Photocatalysis ; Degradation
  • 刊名:Journal of Inorganic and Organometallic Polymers and Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:276-284
  • 全文大小:1,657 KB
  • 参考文献:1.J.-M. Hao, Y.-N. Zhao, H.-H. Li, C.-L. Ming, G.-H. Cui, Synthesis, structures, and characterization of two d 10 metal coordination polymers with a flexible bis (triazole) ligand. Synth. React. Inorg. Met. Org. Nanomet. Chem. 45(7), 947–951 (2015)CrossRef
    2.C.-L. Ming, Z.-C. Hao, B.-Y. Yu, K. Van Hecke, G.-H. Cui, Synthesis, structures, and catalytic properties of three new metal-organic coordination polymers constructed from flexible benzimidazole-based and cis-1, 2-cyclohexanedicarboxylate synthons. J. Inorg. Organomet. Polym Mater. 25(3), 559–568 (2015)CrossRef
    3.L. Qin, Li G-y, J. Zheng, Xiao S-l, Cui G-h, Two 3D supramolecular architectures from Ag (I) coordination polymers constructed by flexible bis (benzimidazolyl) butane ligand. J. Inorg. Organomet. Polym Mater. 23(6), 1266–1273 (2013)CrossRef
    4.S.L. Xiao, L. Qin, C.H. He, X. Du, G.H. Cui, Synthesis, characterizations and luminescent properties of two cadmium (II) coordination polymers derived from bis (benzimidazole)-based ligands. J. Inorg. Organomet. Polym Mater. 23(3), 771–778 (2013)CrossRef
    5.J.M. Hao, Y.N. Zhao, B.Y. Yu, K. Van Hecke, G.H. Cui, Structural diversity of transition-metal coordination polymers derived from isophthalic acid and bent bis (imidazole) ligands. Trans. Met. Chem. 39(7), 741–753 (2014)CrossRef
    6.J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38(5), 1450–1459 (2009)CrossRef
    7.J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009)CrossRef
    8.J.-R. Li, J. Sculley, H.-C. Zhou, Metal–organic frameworks for separations. Chem. Rev. 112(2), 869–932 (2011)CrossRef
    9.J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 255(15), 1791–1823 (2011)CrossRef
    10.S. Ma, H.-C. Zhou, Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)CrossRef
    11.L.J. Murray, M. Dincă, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009)CrossRef
    12.N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003)CrossRef
    13.M. Peplow, Materials science: the hole story. Nature 520(7546), 148–150 (2015)CrossRef
    14.K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112(2), 724–781 (2011)CrossRef
    15.M.C. So, G.P. Wiederrecht, J.E. Mondloch, J.T. Hupp, O.K. Farha, Metal–organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51(17), 3501–3510 (2015)CrossRef
    16.W. Cai, C.-C. Chu, G. Liu, Y.-X.J. Wáng, Metal–organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small (2015). doi:10.​1002/​smll.​201500802
    17.J.-M. Hao, B.-Y. Yu, K. Van Hecke, Cui G-h, A series of d 10 metal coordination polymers based on a flexible bis (2-methylbenzimidazole) ligand and different carboxylates: synthesis, structures, photoluminescence and catalytic properties. CrystEngComm 17(11), 2279–2293 (2015)CrossRef
    18.C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 7(9), 2831–2867 (2014)CrossRef
    19.S. Wang, X. Wang, Multifunctional metal-organic frameworks for photocatalysis. Small 11(26), 3097–3112 (2015). doi:10.​1002/​smll.​201500084 CrossRef
    20.T. Zhang, W. Lin, Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43(16), 5982–5993 (2014)CrossRef
    21.H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 4(97), 54454–54462 (2014)CrossRef
    22.C.C. Wang, Y.X. Song, Y.L. Wang, W. Peng, Syntheses, crystal structure and optical property of two bis-ligand silver (I) complexes containing diphenic acid and bidentate N-donor ligands. Chin. J. Inorg. Chem. 27(2), 361–366 (2011)
    23.C.-C. Wang, G.-L. Guo, P. Wang, Synthesis, structure, and luminescent properties of three silver (I) complexes with organic carboxylic acid and 4, 4′-bipyridine-like ligands. Trans. Met. Chem. 38(4), 455–462 (2013)CrossRef
    24.C.-C. Wang, H.-P. Jing, Y.-Q. Zhang, P. Wang, S.-J. Gao, Three coordination compounds of cobalt with organic carboxylic acids and 1,10-phenanthroline as ligands: syntheses, structures and photocatalytic properties. Trans. Met. Chem. 40(5), 573–584 (2015). doi:10.​1007/​s11243-015-9950-1 CrossRef
    25.C.-C. Wang, H.-Y. Li, G.-L. Guo, P. Wang, Synthesis, characterization, and luminescent properties of a series of silver (I) complexes with organic carboxylic acid and 1, 3-bis (4-pyridyl) propane ligands. Trans. Met. Chem. 38(3), 275–282 (2013)CrossRef
    26.C.-C. Wang, P. Wang, Feng Ll, Influence of organic carboxylic acids on self-assembly of silver (I) complexes containing 1, 2-bis (4-pyridyl) ethane ligands. Trans. Met. Chem. 37(2), 225–234 (2012)CrossRef
    27.C.-C. Wang, P. Wang, G.-L. Guo, 3D sandwich-like frameworks constructed from silver chains: synthesis and crystal structures of six silver (I) coordination complexes. Trans. Met. Chem. 37(4), 345–359 (2012)CrossRef
    28.C.-C. Wang, P. Wang, G.-S. Guo, Synthesis and crystal structures of four mixed-ligand silver (I) complexes with sandwich-like structure. Trans. Met. Chem. 35(6), 721–729 (2010)CrossRef
    29.J.-S. Hu, X.-H. Huang, C.-L. Pan, L. Zhang, Photochemical and magnetic properties of seven new metal-organic frameworks constructed by flexible tetrapyridines and V-shaped polycarboxylate acids. Cryst. Growth Des. 15(5), 2272–2281 (2015)CrossRef
    30.Bruker AXS SMART, Version 5.611 (Bruker AXS Madison, WI, USA, 2000)
    31.Bruker AXS SAINT, Version 6.28 (Bruker AXS, Madison, WI, USA, 2003)
    32.SADABS V2.03 (Bruker AXS, Madison, WI, 2000)
    33.G. M. Sheldrick SHELX-97 (Göttingen University, Germany, 1997)
    34.C.-C. Wang, H.-P. Jing, Y.-Q. Zhang, P. Wang, S.-J. Gao, Three coordination compounds of cobalt with organic carboxylic acids and 1,10-phenanthroline as ligands: syntheses, structures and photocatalytic properties. Trans. Met. Chem. 40(5), 573–584 (2015)CrossRef
    35.W.-J. Ji, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, The ionothermal synthesis of a 3D indium metal–organic framework: crystal structure, photoluminescence property and photocatalytic activity. Inorg. Chem. Commun. 24, 209–211 (2012)CrossRef
    36.P. Du, Y. Yang, J. Yang, B.-K. Liu, J.-F. Ma, Syntheses, structures, photoluminescence, photocatalysis, and photoelectronic effects of 3D mixed high-connected metal–organic frameworks based on octanuclear and dodecanuclear secondary building units. Dalton Trans. 42(5), 1567–1580 (2013)CrossRef
    37.J.I. Pankove, Optical processes in semiconductors (Courier Dover Publications, New York, 2012)
    38.W.W. Wendlandt, H.G. Hecht, Reflectance spectroscopy (Interscience, New York, 1966)
    39.K.C. Stylianou, R. Heck, S.Y. Chong, J. Bacsa, J.T. Jones, Y.Z. Khimyak, D. Bradshaw, M.J. Rosseinsky, A guest-responsive fluorescent 3D microporous metal − organic framework derived from a long-lifetime pyrene core. J. Am. Chem. Soc. 132(12), 4119–4130 (2010)CrossRef
    40.K.G. Laurier, F. Vermoortele, R. Ameloot, D.E. De Vos, J. Hofkens, M.B. Roeffaers, Iron (III)-based metal-organic frameworks as visible light photocatalysts. J. Am. Chem. Soc. 135(39), 14488–14491 (2013)CrossRef
    41.M. Dai, H.-X. Li, J.-P. Lang, New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts. CrystEngComm 17(26), 4741–4753 (2015). doi:10.​1039/​C5CE00619H CrossRef
    42.C.-C. Wang, H.-P. Jing, P. Wang, S.-J. Gao, Series metal–organic frameworks constructed from 1,10-phenanthroline and 3,3′,4,4′-biphenyltetracarboxylic acid: hydrothermal synthesis, luminescence and photocatalytic properties. J. Mol. Struct. 1080, 44–51 (2015). doi:10.​1016/​j.​molstruc.​2014.​09.​056 CrossRef
    43.C.-C. Wang, H.-P. Jing, P. Wang, Three silver-based complexes constructed from organic carboxylic acid and 4, 4′-bipyridine-like ligands: syntheses, structures and photocatalytic properties. J. Mol. Struct. 1074, 92–99 (2014)CrossRef
    44.C. Gomes Silva, I. Luz, F.X. Llabrés i Xamena, A. Corma, H. García, Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem. A Eur. J. 16(36), 11133–11138 (2010)CrossRef
    45.H. Zhang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 42(10), 3803–3807 (2008)CrossRef
    46.C.-C. Wang, Y.-Q. Zhang, T. Zhu, X.-Y. Zhang, P. Wang, S.-J. Gao, Four coordination compounds constructed from 1, 10-phenanthroline and semi-flexible and flexible carboxylic acids: hydrothermal synthesis, optical properties and photocatalytic performance. Polyhedron 90, 58–68 (2015)CrossRef
    47.M. Nasalevich, M. Van der Veen, F. Kapteijn, J. Gascon, Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16(23), 4919–4926 (2014)CrossRef
  • 作者单位:Chong-Chen Wang (1) (2)
    Dao-Xin Xu (1)
    Huan-Ping Jing (1)
    Xin-Xing Guo (1)
    Peng Wang (1)
    Shi-Jie Gao (1)

    1. Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
    2. Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer New York
  • ISSN:1574-1451
文摘
Two novel coordination compounds based on zinc ions, 1,10-phenanthroline (phen) and two similar azophenyl ligands, 3,4-dicarboxyl-(3′,4′-dicarboxylazophenyl) benzene (3,4-H4dczpb), as well as 2,3-dicarboxyl-(2′,3′-dicarboxylazophenyl)benzene (2,3-H4dczpb), namely [Zn(phen)(2,3-H2dczpb)(H2O)]·H2O (1), and [Zn2(phen)4(3,4-H2dczpb)](3,4-H4dczpb)2·2H2O (2), have been synthesized under hydrothermal conditions, and characterized by single crystal X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), CHN elemental analysis, thermogravimetric analysis (TGA) and UV–Visible diffuse reflectance spectra (UV–Vis DRS). Compound 1 was built up of one-dimensional [Zn(phen)(2,3-H2dczpb)(H2O)] chains, while compound 2 was composed of zero-dimensional discrete [Zn2(phen)4(3,4-H2dczpb)] unit and uncoordinated 3,4-H4dczpb. The UV–Vis DRS results revealed that the E g values of compounds 1 and 2 are 3.0 and 2.9 eV, respectively, implying that both 1 and 2 illustrate selective absorption in the ultraviolet region. The photocatalytic activities of degradation of methylene blue (MB) in compounds 1 and 2 under UV light irradiation were conducted, and the results revealed that both 1 and 2 can decompose MB efficiently. Finally, the TGA results exhibited 1 and 2 possess good thermal stability. Keywords Coordination compound Thermal stability Optical energy gap Photocatalysis Degradation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700