用户名: 密码: 验证码:
TNP-ATP is Beneficial for Treatment of Neonatal Hypoxia-Induced Hypomyelination and Cognitive Decline
详细信息    查看全文
  • 作者:Jie Xiao ; Yilong Huang ; Xia Li ; Longjun Li ; Ting Yang
  • 关键词:Neonatal hypoxia ; Inflammation ; Ionotropic ATP receptors ; Glutamate ; Memory deficit
  • 刊名:Neuroscience Bulletin
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:99-107
  • 全文大小:1,155 KB
  • 参考文献:1.de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2010, 95: F220–224.CrossRef PubMed
    2.Deng Y, Xie D, Fang M, Zhu G, Chen C, Zeng H, et al. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 2014, 9: e87420.PubMedCentral CrossRef PubMed
    3.Kaur. C, Sivakumar. V, Zou. Z, Ling. E-A. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct 2014, 219: 151–170.CrossRef PubMed
    4.Fatemi A, Wilson MA, Phillips AW, McMahon MT, Zhang J, Smith SA, et al. In vivo magnetization transfer MRI shows dysmyelination in an ischemic mouse model of periventricular leukomalacia. J Cereb Blood Flow Metab 2011, 31: 2009–2018.PubMedCentral CrossRef PubMed
    5.Meng S, Qiao M, Scobie K, Tomanek B, Tuor UI. Evolution of magnetic resonance imaging changes associated with cerebral hypoxia-ischemia and a relatively selective white matter injury in neonatal rats. Pediatr Res 2006, 59: 554–559.CrossRef PubMed
    6.Wang S, Wu EX, Tam CN, Lau HF, Cheung PT, Khong PL. Characterization of white matter injury in a hypoxic-ischemic neonatal rat model by diffusion tensor MRI. Stroke 2008, 39: 2348–2353.CrossRef PubMed
    7.Suryana E, Jones NM. The effects of hypoxic preconditioning on white matter damage following hypoxic-ischaemic injury in the neonatal rat brain. Int J Dev Neurosci 2014, 37: 69–75.CrossRef PubMed
    8.Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol 2009, 87: 264–280.CrossRef PubMed
    9.Cengiz P, Uluc K, Kendigelen P, Akture E, Hutchinson E, Song C, et al. Chronic neurological deficits in mice after perinatal hypoxia and ischemia correlate with hemispheric tissue loss and white matter injury detected by MRI. Dev Neurosci 2011, 33: 270–279.PubMedCentral CrossRef PubMed
    10.Huang Z, Liu J, Cheung PY, Chen C. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 2009, 1301: 100–109.CrossRef PubMed
    11.Pu Y, Li QF, Zeng CM, Gao J, Qi J, Luo DX, et al. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 2000, 21: 203–212.PubMed
    12.Ikonomidou C, Price MT, Mosinger JL, Frierdich G, Labruyere J, Salles KS, et al. Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain. J Neurosci 1989, 9: 1693–1700.PubMed
    13.Zonouzi M, Renzi M, Farrant M, Cull-Candy SG. Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells. Nat Neurosci 2011, 14: 1430–1438.PubMedCentral CrossRef PubMed
    14.Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 2007, 10: 1377–1386.CrossRef PubMed
    15.Schousboe A, Waagepetersen HS. Glial modulation of GABAergic and glutamat ergic neurotransmission. Curr Top Med Chem 2006, 6: 929–934.CrossRef PubMed
    16.Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 2007, 51: 333–355.PubMedCentral CrossRef PubMed
    17.Yi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006, 48: 394–403.CrossRef PubMed
    18.Rodrigues RJ TAaCR. ATP as a multi-target danger signal in the brain. Front Neurosci 2015, 9.
    19.Li F, Wang L, Li JW, Gong M, He L, Feng R, et al. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. BMC Neurosci 2011, 12: 111.PubMedCentral CrossRef PubMed
    20.Yan YG, Zhang J, Xu SJ, Luo JH, Qiu S, Wang W. Clustering of surface NMDA receptors is mainly mediated by the C-terminus of GluN2A in cultured rat hippocampal neurons. Neurosci Bull 2014, 30: 655–666.CrossRef PubMed
    21.Savard A, Lavoie K, Brochu ME, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation 2013, 10: 110.PubMedCentral CrossRef PubMed
    22.Balazs B, Danko T, Kovacs G, Koles L, Hediger MA, Zsembery A. Investigation of the inhibitory effects of the benzodiazepine derivative, 5-BDBD on P2X4 purinergic receptors by two complementary methods. Cell Physiol Biochem 2013, 32: 11–24.CrossRef PubMed
    23.Barr TP, Hrnjic A, Khodorova A, Sprague JM, Strichartz GR. Sensitization of cutaneous neuronal purinergic receptors contributes to endothelin-1-induced mechanical hypersensitivity. Pain 2014, 155: 1091–1101.PubMedCentral CrossRef PubMed
    24.Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 2013, 45: 932–943.CrossRef PubMed
    25.Gofman L, Cenna JM, Potula R. P2X4 receptor regulates alcohol-induced responses in microglia. J Neuroimmune Pharmacol 2014, 9: 668–678.PubMedCentral CrossRef PubMed
    26.Wu T, Dai M, Shi XR, Jiang ZG, Nuttall AL. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. Am J Physiol Heart Circ Physiol 2011, 301: H69–78.PubMedCentral CrossRef PubMed
    27.Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003, 424: 778–783.CrossRef PubMed
    28.Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 2009, 29: 998–1005.PubMedCentral CrossRef PubMed
    29.Zou W, Wang HX, Liu J, Zhang H, An LJ. Expression of caveolin-1 protein in the rat brain and its role in the discrimination learning. Acta Physiologica Sin 2006, 58: 429–434.
    30.Zhang Y, Qiao L, Song M, Wang L, Xie J, Feng H. HPLC-ESI-MS/MS analysis of the water-soluble extract from Ziziphi spinosae semen and its ameliorating effect of learning and memory performance in mice. Pharmacogn Mag 2014, 10: 509–516.PubMedCentral CrossRef PubMed
    31.Li ZQ, Li LX, Mo N, Cao YY, Kuerban B, Liang YX, et al. Duration-dependent regulation of autophagy by isoflurane exposure in aged rats. Neurosci Bull 2015, 31: 505–513.CrossRef PubMed
    32.Fang F, Lei H. Increased hippocampal T2 in a rat model of pentylenetetrazol-induced kindling correlates with seizure scores. J Neurol Sci 2010, 292: 16–23.CrossRef PubMed
    33.Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006, 110: 433–454.CrossRef PubMed
    34.Nakatsuka T, Gu JG. P2X purinoceptors and sensory transmission. Pflugers Arch 2006, 452: 598–607.CrossRef PubMed
    35.Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K. Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 2009, 5: 28.PubMedCentral CrossRef PubMed
    36.Gum RJ, Wakefield B, Jarvis MF. P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinergic Signal 2012, 8: 41–56.PubMedCentral CrossRef PubMed
    37.Horvath RJ, Romero-Sandoval EA, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 2010, 150: 401–413.PubMedCentral CrossRef PubMed
    38.Sivakumar V, Ling EA, Lu J, Kaur C. Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 2010, 58: 507–523.CrossRef PubMed
    39.Kylhammar D, Bune LT, Radegran G. P2Y(1) and P2Y(1)(2) receptors in hypoxia- and adenosine diphosphate-induced pulmonary vasoconstriction in vivo in the pig. Eur J Appl Physiol 2014, 114: 1995–2006.CrossRef PubMed
    40.Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 2013, 12: 265–286.PubMedCentral CrossRef PubMed
    41.Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005, 63: 191–270.CrossRef PubMed
    42.Ziganshin AU, Ziganshina LE, King BF, Pintor J, Burnstock G. Effects of P2-purinoceptor antagonists on degradation of adenine nucleotides by ecto-nucleotidases in folliculated oocytes of Xenopus laevis. Biochem Pharmacol 1996, 51: 897–901.CrossRef PubMed
  • 作者单位:Jie Xiao (1)
    Yilong Huang (1)
    Xia Li (1)
    Longjun Li (1)
    Ting Yang (1)
    Lixuan Huang (1)
    Ling Yang (1)
    Hong Jiang (1)
    Hongchun Li (1)
    Fan Li (1)

    1. Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
  • 刊物主题:Neurosciences; Human Physiology; Anesthesiology; Anatomy; Neurology; Pain Medicine;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1995-8218
文摘
Our previous study together with other investigations have reported that neonatal hypoxia or ischemia induces long-term cognitive impairment, at least in part through brain inflammation and hypomyelination. However, the detailed mechanisms are not fully understood. Here, we used a rodent model of neonatal hypoxia by subjecting postnatal day 0 (P0) rat pups to systemic hypoxia (3.5 h). We found that neonatal hypoxia increased the glutamate content and initiated inflammatory responses at 4 h and 1 day after hypoxia, caused hypomyelination in the corpus callosum, and impaired hippocampus-dependent learning and memory when assessed 30–60 days after hypoxia. Interestingly, much of the hypoxia-induced brain damage was ameliorated by treatment with the ATP analogue 2′,3′-0-(2,4,6-trinitrophenyl)-adenosine 5′-triphosphate (TNP-ATP; blocks all ionotropic P2X1-7 receptors), whereas treatment with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS; inhibits P2X1-3 and P2X5-7 receptors) was less neuroprotective. Our data indicated that activation of ionotropic ATP receptors might be partially, if not fully, involved in glutamate deregulation, neuroinflammation, hypomyelination, and cognitive dysfunction after neonatal hypoxia. Keywords Neonatal hypoxia Inflammation Ionotropic ATP receptors Glutamate Memory deficit

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700