用户名: 密码: 验证码:
Earthquake grouping criteria for spatially heterogeneous seismicity
详细信息    查看全文
  • 作者:A. V. Deshcherevskii ; K. M. Mirzoev ; A. A. Lukk
  • 关键词:earthquake grouping ; grouping criteria ; critical grouping radius
  • 刊名:Izvestiya, Physics of the Solid Earth
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:52
  • 期:1
  • 页码:78-95
  • 全文大小:1,375 KB
  • 参考文献:Aki, K., Some problems in statistical seismology, Zisin, 1956, vol. 8, pp. 205–228.
    Baiesi, M. and Paczuski, M., Scale-free networks of earthquakes and aftershocks, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, vol. 69, no. 6, pp. 66–106.CrossRef
    Bak, P., Christensen, K., Danon, L., and Scanlon, T., Unified scaling law for earthquakes, Phys. Rev. Lett., 2002, vol. 88, p. 178501.CrossRef
    Bibarsova, D.G. and Mirzoev, K.M., The program for identifying group earthquakes, in Prognoz zemletryasenii (Earthquake Prediction), Dushanbe–Moscow: Donish, 1986, vol. 6, pp. 390–410.
    Corral, A., Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2003, vol. 68, no. 3, p. 035102.CrossRef
    Davidsen, J. and Paczuski, M., Analysis of the spatial distribution between successive earthquakes, Phys. Rev. Lett., 2005, vol. 94, p. 048501.CrossRef
    Davis, S.D. and Frohlich, C., Single-link cluster analysis, synthetic earthquake catalogs, and aftershock identification, Geophys. J. Int., 1991, vol. 104, pp. 289–306.CrossRef
    Dziewonski, A.M. and Prozorov, A.G., Self-similar identification of earthquake grouping, in Vychislitel’naya seismologiya (Computational Seismology), Moscow: Nauka, 1984, vol. 16, pp. 10–21.
    Frohlich, C. and Davis, S.D., Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogs, Geophys. J. Int., 1990, vol. 100, pp. 19–32.CrossRef
    Gardner, J. and Knopoff, L., Is the sequence of earthquakes in southern California, with aftershock removed, Poissonian?, Bull. Seismol. Soc. Am., 1974, vol. 64, pp. 1363–1367.
    Geodakyan, E.G. and Oganesyan, S.M., On the activation of weak seismicity in central Armenia, Izv. NAN RA,Nauki o Zemle, 2011, vol. 64, no. 3, pp. 27–39.
    Hirata, T., Omori’s power law aftershock sequences of microfracturing in rock fracture experiment, J. Geophys. Res., 1987, vol. 92, pp. 6215–6221.CrossRef
    Kagan, Y. and Knopoff, L., Statistical search for non-random features of the seismicity of strong earthquakes, Phys. Earth Planet. Inter., 1976, vol. 12, pp. 291–318.CrossRef
    Kagan, Y.Y., Likelihood analysis of earthquake catalogues, Geophys. J. Int., 1991, vol. 106, pp. 135–148.CrossRef
    Keilis-Borok, V.I. and Kossobokov, V.G., The periods of increased probability of occurrence for the strongest earthquakes in the world, in Matematicheskie metody v seismologii i geodinamike. Vychislitel’naya seismologiya, vyp. 19 (Mathematical Methods in Seismology and Geodynamics. Computational Seismology, vol. 19), Moscow: Nauka, 1986, pp. 48–58.
    Knopoff, L., The statistics of earthquakes in Southern California, Bull. Seism. Soc. Am., 1964, vol. 54, no. 6, pp. 1871–1873.
    Krolevets, A.N., The fault planes of the Kronotskoe earthquake of December 5, 1997, Geofizicheskii monitoring Kamchatki. Materialy nauchno-tekhnicheskoi konferentsii 17–18 yanvarya 2006, Petropavlovsk-Kamchatskii (Geophysical Monitoring of Kamchatka, Proc. Scientific–Technical Conference, January 17–18, 2006, Petropavlovsk-Kamchatskii), Petropavlovsk-Kamchatskii: Ottisk, 2006, pp. 32–39.
    Latora, V., Rapisarda, A., and Vinciguerra, S., A fractal approach to the temporal distribution of microseismicity at the low eastern flank of Mt. Etna during 1989-1994, Phys. Earth Planet. Inter., 1998, vol. 109, pp. 115–127.CrossRef
    Van Lieshout, M.N.M. and Stein, A., Earthquake modelling at the country level using aggregated spatio-temporal point processes, Math. Geosci., 2012, vol. 44, pp. 309–326. doi 10.1007/s11004-011-9380-3CrossRef
    Lukk, A.A., Spatiotemporal sequences of the weak earthquakes in the Garm region, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1978, no. 2, pp. 25–37.
    Lukk, A.A. and Turchaninov, I.V., Identification of linear earthquake epicenter sequences in the seismic field of the Garm region, Izv., Phys. Solid Earth, 1998, vol. 34, no. 10, pp. 787–804.
    Mirzoev, K.M., Grouping of the earthquakes of Tajikistan, Izv. Akad. Nauk Tadzh. SSR. Otd Fiz.-Mat. Geol.-Khim. Nauk, 1980, vol. 75, no. 1, pp. 62–70.
    Mirzoev, K.M. and Azizova, A.A., Statistical regularities in the grouping of the crustal earthquakes in Tajikistan and neighboring territories, in Zemletryaseniya Srednei Azii i Kazakhstana v 1981 (Earthquakes of Central Asia and Kazakhstan in 1981), Dushanbe: Donish, 1983, pp. 48–68.
    Mirzoev, K.M. and Azizova, A.A., Spatiotemporal pattern of earthquake grouping in Tajikistan and neighboring regions, in Zemletryaseniya Srednei Azii i Kazakhstana v 1982 (Earthquakes of Central Asia and Kazakhstan in 1982), Dushanbe: Donish, 1984, pp. 43–95.
    Mirzoev, K.M., The technique for identifying the interrelated earthquakes, Dokl. Akad. Nauk Tadzh. SSR, 1988a, vol. 31, no. 3, pp. 182–186.
    Mirzoev, K.M., The method for identifying the interacting earthquakes in space and time, in Zemletryaseniya Srednei Azii i Kazakhstana. 1984 (Earthquakes of Central Asia and Kazakhstan in 1984), Dushanbe: Donish, 1988b, pp. 185–194.
    Mirzoev, K.M., Ronskii, Yu.L., and Timerkaev, V.S., On one approach to the problem of earthquake grouping, Dokl. Akad. Nauk Tadzh. SSR, 1988, vol. 31, no. 2, pp. 111–114.
    Mirzoev, K.M., Recomendations for identifying the group earthquakes, in Voprosy inzhenernoi seismologii. Inzhenerno-seismologicheskie issledovaniya dlya raionirovaniya seismicheskoi opasnosti. Vyp. 33 (Problems of Earthquake Engineering. Seismological Engineering Studies for Seismic Hazard Zonation, vol. 33), Moscow: Nauka, 1992, pp. 53–57.
    Molchan, G.M. and Dmitrieva, O.E., Aftershock identification: a review and new methods, in Sovremennye metody interpretatsii seismologicheskikh dannykh. Vychislitel’naya seismologiya. Vyp. 24 (Modern Methods for Interpretation of Seismological Data. Computational Seismology, vol. 24), Moscow: Nauka, 1991, pp. 19–50.
    Molchan, G. and Dmitrieva, O., Aftershock identification: methods and new approaches, Geophys. J. Int., 1992, vol. 109, pp. 501–516.CrossRef
    Musmeci, F. and Vere-Jones, D., A space-time clustering model for historical earthquakes, Ann. Inst. Stat. Math., 1992, vol. 44, pp. 1–11.CrossRef
    Ogata, Y., Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 1988, vol. 83, no. 401, pp. 9–27.CrossRef
    Omori, F., On after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo, 1894, vol. 7, pp. 111–200.
    Oncel, A.O., Main, I., Alptekin, O., and Cowie, P., Temporal variations in the clustering property of seismicity in the North Anatolia fault zone between 31° E and 41° E, Pure Appl. Geophys., 1996, vol. 147, pp. 147–159.CrossRef
    Prozorov, A.G. and Dziewonski, A.M., A method of studying variations in the clustering property of earthquakes: application to the analysis of global seismicity, J. Geophys. Res.: Solid Earth, 1982, vol. 87, no. B4, pp. 2829–2839.CrossRef
    Prozorov, A.G., Dynamical algorithm for identifying the aftershocks for the world earthquake catalog, in Matematicheskie metody v seismologii i geodinamike. Vychislitel’naya seismologiya. Vyp. 19 (Mathematical Methods in Seismology. Computational Seismology, vol. 19), Moscow: Nauka, 1986, pp. 58–62.
    Rathbun, S.L., Modeling marked spatio-temporal point patterns, Bull. Int. Stat. Inst, 1993, vol. 55, book 2, pp.379–396.
    Reasenberg, P., Second-order moment of central California seismicity, 1969–1982, J. Geophys. Res., 1985, vol. 90, no. B7, pp. 5479–5495.CrossRef
    Saltykov, V.A., Kugaenko, Yu.A., Kravchenko, N.M., and Konovalova, A.A., A parametric representation of Kamchatka seismicity over time, J. Volcanol. Seismol., 2013, vol. 7, no. 1, pp. 58–75.CrossRef
    Shebalin, P.N., Chains of the epicenters as a marker of the increase in the earthquake correlation length before strong earthquakes, Vulkanol. Seismol., 2005, no. 1, pp. 3–15.
    Smalley, R.F., Chatelain, J.L., Turcott, D.L., and Prevot, D.R., A fractal approach to the clustering of earthquakes: applications to the seismicity of the New Hebrides, Bull. Seismol. Soc. Am., 1987, vol. 77, no. 4, pp. 1368–1381.
    Smirnov, V.B. and Lyusina, A.V., On the time structure of aftershock sequences (by the example of the Alaska and Kamchatka earthquakes), Vulkanol. Seismol., 1990, no. 6, pp. 45–54.
    Smirnov, V.B., Prognostic anomalies of seismic regime. Part 1: Technique for preparation of original data, Geofiz. Issled., 2009, vol. 10, no. 2, pp. 7–22.
    Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.
    Tosi, P., Seismogenic structure behaviour revealed by spatial clustering of seismicity in Umbria-Mache Region (Central Italy), Ann. Geofisica, 1998, vol. 41, no. 2, pp. 215–224.
    Utsu, T., Aftershock and earthquake statistics (1): some parameters which characterize an aftershock sequence and their interrelations, J. Fac. Sci. Hokkaido Univ., 1969, ser. 7, vol. 3, no. 3, pp. 129–195.
    Vecchio, A., Carbone, V., Sorriso-Valvo, L., et al., Statistical properties of earthquakes clustering, Nonlinear Processes. Geophys., 2008, vol. 15, pp. 333–338. www.nonlinprocesses-geophys.net/15/333/2008/CrossRef
    Wyss, M., Sammis, Ch.G., Robert, M., Nadeau, R.M., and Wiemer, S., Fractal dimension and b-value on creeping and locked patches of the San Andreas fault near Parkfield, California, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 2, pp. 410–421.CrossRef
    Zaliapin, I. and Ben-Zion, Y., Earthquake clusters in southern California: 1. Identification and stability, J. Geophys. Res.: Solid Earth, 2013, vol. 118, pp. 1–18. doi 10.1002/jgrb.50179
    Zavyalov, A.D., Srednesrochnyi prognoz zemletryasenii. Osnovy, metodika, realizatsiya (Medium-Term Prediction of Earthquakes from a Set of Criteria: Principles, Methods, and Implementation), Moscow: Nauka, 2006.
    Zhuang, J., Ogata, Y., and Vere-Jones, D., Stochastic declustering of space-time earthquake occurrences, J. Am. Stat. Assoc., 2002, vol. 97, pp. 369–380.CrossRef
    Zhuang, J., Ogata, Y., and Vere-Jones, D., Analyzing earthquake clustering features by using stochastic reconstruction, J. Geophys. Res., 2004, vol. 109, B05301. doi 10.1029/2003JB002879
  • 作者单位:A. V. Deshcherevskii (1)
    K. M. Mirzoev (1)
    A. A. Lukk (1)

    1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. Bol’shaya Gruzinskaya 10, Moscow, 123995, Russia
  • 刊物主题:Geophysics/Geodesy;
  • 出版者:Springer US
  • ISSN:1555-6506
文摘
An advanced method for estimating the earthquake grouping parameters R cr and T cr is proposed in order to identify interrelated seismic events. The method pursues continuity with the previous algorithm suggested in (Mirzoev, 1980; 1988a; 1988b; 1992; Mirzoev and Azizova, 1983; 1984) but uses a more realistic spatial model of the background seismicity. All the calculations in the method can be fully formalized and a preliminary expert estimation of the parameters is not required. The method provides stable estimates of the critical radius R cr and time T cr of grouping. Group earthquakes make up 50 to 75% of their total number. Keywords earthquake grouping grouping criteria critical grouping radius

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700