用户名: 密码: 验证码:
Green Synthesis of Oxovanadium(IV)/chitosan Nanocomposites and Its Ameliorative Effect on Hyperglycemia, Insulin Resistance, and Oxidative Stress
详细信息    查看全文
  • 作者:Yanjun Liu ; Xu Jie ; Yongli Guo ; Xin Zhang…
  • 关键词:Oxovanadium(IV)/chitosan nanocomposites ; Chitosan ; Hyperglycemia ; Insulin resistance ; Oxidative stress
  • 刊名:Biological Trace Element Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:169
  • 期:2
  • 页码:310-319
  • 全文大小:701 KB
  • 参考文献:1.Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204(1):1PubMed PubMedCentral CrossRef
    2.Lee HW, Park YS, Choi JW, Yi SY, Shin WS (2003) Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol Pharm Bull 26(8):1100–1103PubMed CrossRef
    3.Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem 236(1-2):7–12PubMed CrossRef
    4.Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103(4):554–558PubMed CrossRef
    5.Wang ZQ, Cefalu WT (2010) Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep 10(2):145–151PubMed CrossRef
    6.Barbagallo M, Dominguez LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458(1):40–47PubMed CrossRef
    7.Yoshikawa Y, Ueda E, Miyake H, Sakurai H, Kojima Y (2001) Insulinomimetic bis(maltolato)zinc(II) complex: blood glucose normalizing effect in KK-A(y) mice with type 2 diabetes mellitus. Biochem Biophys Res Commun 281(5):1190–1193PubMed CrossRef
    8.Alkaladi A, Abdelazim AM, Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15(2):2015–2023PubMed PubMedCentral CrossRef
    9.Xu Y, Wang L, Li YK, Wang CQ (2014) Oxidation and pH responsive nanoparticles based on ferrocene-modified chitosan oligosaccharide for 5-fluorouracil delivery. Carbohydr Polym 114:27–35PubMed CrossRef
    10.Li Q, Hu X, Bai Y, Alattar M, Ma D, Cao Y, Hao Y, Wang L, Jiang C (2013) The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem Toxicol 60:213–217PubMed CrossRef
    11.Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28PubMed CrossRef
    12.Phoempoon P, Sikong L (2014) Phase transformation of VO2 nanoparticles assisted by microwave heating. Sci World J 2014:841418CrossRef
    13.Liao X-H, Zhu J-J, Chen H-Y (2001) Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater Sci Eng B 85(1):85–89CrossRef
    14.van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14(3):201–207PubMed CrossRef
    15.Baran EJ, Ferrer EG, Williams PAM (1995) Interaction of the vanadyl(IV) cation with ascorbic acid and related systems. J Inorg Biochem 59(2–3):600CrossRef
    16.Ferrer EG, Baran EJ (2001) Reduction of vanadium(V) with ascorbic acid and isolation of the generated oxovanadium(IV) species. Biol Trace Elem Res 83(2):111–119PubMed CrossRef
    17.Hu S, Chang Y, Wang J, Xue C, Li Z, Wang Y (2013) Fucosylated chondroitin sulfate from sea cucumber in combination with rosiglitazone improved glucose metabolism in the liver of the insulin-resistant mice. Biosci Biotechnol Biochem 77(11):2263–2268PubMed CrossRef
    18.Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMed CrossRef
    19.Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 8(4):323–334PubMed CrossRef
    20.Johansson LH, Håkan Borg LA (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174(1):331–336PubMed CrossRef
    21.Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190(2):360–365PubMed CrossRef
    22.Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17(13):2639–2644
    23.Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L (2006) Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol 38(7):1171–1180PubMed CrossRef
    24.Jansson-Charrier M, Guibal E, Roussy J, Delanghe B, Cloirec PL (1996) Vanadium (IV) sorption by chitosan: kinetics and equilibrium. Water Res 30(95):465–475CrossRef
    25.Baran EJ (2008) Spectroscopic investigation of the VO2+/chitosan interaction. Carbohydr Polym 74(3):704–706CrossRef
    26.Lichawska ME, Bodek KH, Jezierska J, Kufelnicki A (2014) Coordinative interaction of microcrystalline chitosan with oxovanadium (IV) ions in aqueous solution. Chem Cent J 8(34):10785–10791
    27.Kumbicak U, Cavas T, Cinkilic N, Kumbicak Z, Vatan O, Yilmaz D (2014) Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 73:105–112PubMed CrossRef
    28.Gao F-P, Zhang H-Z, Liu L-R, Wang Y-S, Jiang Q, Yang X-D, Zhang Q-Q (2008) Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydr Polym 71(4):606–613CrossRef
    29.Bhumkar D, Joshi H, Sastry M, Pokharkar V (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426PubMed CrossRef
    30.Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutr 33(4):787–793PubMed
    31.Pessin JE, Kwon H (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol 4:71
    32.Hu S, Xia G, Wang J, Wang Y, Li Z, Xue C (2014) Fucoidan from sea cucumber protects against high-fat high-sucrose diet-induced hyperglycaemia and insulin resistance in mice. J Funct Foods 10:128–13CrossRef
    33.Gan L, Guo K, Cremona ML, McGraw TE, Leibel RL, Zhang Y (2012) TNF-α up-regulates protein level and cell surface expression of the leptin receptor by dtimulating its export via a PKC-dependent mechanism. Endocrinology 153(12):5821–5833PubMed PubMedCentral CrossRef
    34.Hsieh YL, Yao HT, Cheng RS, Chiang MT (2012) Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats. J Med Food 15(5):453–460PubMed CrossRef
    35.Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830PubMed PubMedCentral CrossRef
    36.Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948PubMed CrossRef
    37.Miura T, Usami M, Tsuura Y, Ishida H, Seino Y (1995) Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharm Bull 18(11):1623–1625PubMed CrossRef
    38.Lapenna D, Ciofani G, Bruno C, Pierdomenico SD, Giuliani L, Giamberardino MA, Cuccurullo F (2002) Vanadyl as a catalyst of human lipoprotein oxidation. Biochem Pharmacol 63(3):375–380PubMed CrossRef
    39.Kurt O, Ozden TY, Ozsoy N, Tunali S, Can A, Akev N, Yanardag R (2011) Influence of vanadium supplementation on oxidative stress factors in the muscle of STZ-diabetic rats. Biometals 24(5):943–949PubMed CrossRef
    40.Chakraborty D, Bhattacharyya A, Majumdar K, Chatterjee GC (1977) Effects of chronic vanadium pentoxide administration on L-ascorbic acid metabolism in rats: influence of L-ascorbic acid supplementation. Int J Vitam Nutr Res 47(1):81–87PubMed
    41.Kanauchi O, Deuchi K, Imasato Y, Shizukuishi M, Kobayashi E (1995) Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci Biotechnol Biochem 59(5):786–790PubMed CrossRef
    42.Decorde K, Teissedre PL, Sutra T, Ventura E, Cristol JP, Rouanet JM (2009) Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res 53(5):659–666PubMed CrossRef
  • 作者单位:Yanjun Liu (1)
    Xu Jie (1)
    Yongli Guo (1)
    Xin Zhang (1)
    Jingfeng Wang (1)
    Changhu Xue (1)

    1. College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong Province, China
  • 刊物主题:Biochemistry, general; Biotechnology; Nutrition; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0720
文摘
In this paper, the preparation, characterization, and ameliorative effect on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, oxidative stress in mice of novel oxovanadium(IV)/chitosan (OV/CS) nanocomposites were investigated. The nanobiocomposite was produced by chemical reduction by chitosan and L-ascorbic acid using microwave heating, under environment-friendly conditions, using aqueous solutions, and notably, by using both mediators as reducing and stabilizing agents. In addition, OV/CS nanocomposites were characterized by transmission electron microscopy, energy dispersive spectroscopy, particle size, and zeta potential measurements. In vivo experiments were designed to examine whether the OV/CS nanocomposites would provide additional benefits on oxidative stress, hyperglycemia, and insulin resistance in mice with type 2 diabetes. The results rendered insulin resistant by treating with OV/CS nanocomposites alleviate insulin resistance and improve oxidative stress. Such nanocomposite seem to be a valuable therapy to achieve and/or maintain glycemic control and therapeutic agents in the treatment arsenal for insulin resistance and type 2 diabetes. Keywords Oxovanadium(IV)/chitosan nanocomposites Chitosan Hyperglycemia Insulin resistance Oxidative stress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700