用户名: 密码: 验证码:
Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01
详细信息    查看全文
  • 作者:Qijian Song ; Jerry Jenkins ; Gaofeng Jia ; David L. Hyten ; Vince Pantalone…
  • 关键词:Soybean ; Wm82.a2.v1 assembly ; BARCSOYSSR_1.0 database ; SoySNP50K BeadChip ; euchromatic and heterochromatic regions ; linkage map
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:421 KB
  • 参考文献:1.Keim P, Diers BW, Olson TC, Shoemaker RC. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990;126(3):735–42.PubMed PubMedCentral <br>2.Lark KG, Weisemann JM, Matthews BF, Palmer R, Chase K, Macalma T. A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: ‘Minsoy’ and ‘Noir 1’. Theor Appl Genet. 1993;86(8):901–6.CrossRef PubMed <br>3.Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, et al. A high-density soybean genetic map based on AFLP markers. Crop Sci. 1997;37(2):537–43.CrossRef <br>4.Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 1992;132(4):1131–9.PubMed PubMedCentral <br>5.Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci. 1995;35(5):1439–45.CrossRef <br>6.Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, et al. An integrated genetic linkage map of the soybean. Crop Sci. 1999;39:1464–90.CrossRef <br>7.Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, et al. A new integrated genetic linkage map of the soybean. Theor Appl Genet. 2004;109(1):122–8.CrossRef PubMed <br>8.Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, et al. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics. 2007;176(1):685–96.CrossRef PubMed PubMedCentral <br>9.Hyten DL, Choi IK, Song QJ, Specht JE, Carter TE, Shoemaker RC, et al. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for QTL mapping. Crop Sci. 2010;50(3):960–8.CrossRef <br>10.Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Report. 1991;9(3):208–18.CrossRef <br>11.Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83.CrossRef PubMed <br>12.Gustafson P, Woody JL, Severin AJ, Bolon Y-T, Joseph B, Diers BW, et al. Gene expression patterns are correlated with genomic and genic structure in soybean. Genome. 2010;54(1):10–8.CrossRef <br>13.Upchurch RG, Ramirez ME. Soybean plastidal omega-3 fatty acid desaturase genes: structure and expression. Crop Sci. 2011;51(4):1673–82.CrossRef <br>14.Anderson JE, Kantar MB, Kono TY, Fu F, Stec AO, Song Q, Cregan PB, Specht JE, Diers BW, Cannon SB. A roadmap for functional structural variants in the soybean genome. G3: Genes Genomes Genetics. 2014:g3. 114.011551<br>15.Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, et al. Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci. 2010;15(9):479–87.CrossRef PubMed <br>16.Cannon SB, May GD, Jackson SA. Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol. 2009;151(3):970–7.CrossRef PubMed PubMedCentral <br>17.Lin JY, Stupar RM, Hans C, Hyten DL, Jackson SA. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. Plant Cell. 2010;22(8):2545–61.CrossRef PubMed PubMedCentral <br>18.McClean PE, Mamidi S, McConnell M, Chikara S, Lee R. Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics. 2010;11(1):184.CrossRef PubMed PubMedCentral <br>19.Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science. 2012;338(6111):1206–9.CrossRef PubMed <br>20.Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, et al. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A. 2010;107(19):8563–8.CrossRef PubMed PubMedCentral <br>21.Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A. 2012;109(32):E2155–64.CrossRef PubMed PubMedCentral <br>22.Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, et al. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol. 2014;165(2):630–47.CrossRef PubMed PubMedCentral <br>23.Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8(1):e54985.CrossRef PubMed PubMedCentral <br>24.Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, et al. Fingerprinting soybean germplasm and its utility in genomic research. G3: Genes Genomes Genetics. 2015;50(10):1999–2006.CrossRef <br>25.Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, et al. Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet. 2015;128(1):73–91.CrossRef PubMed <br>26.Zhang Z, Hao J, Yuan J, Song Q, Hyten DL, Cregan PB, et al. Phytophthora root rot resistance in soybean E00003. Crop Sci. 2014;54(2):492–9.CrossRef <br>27.Zeng A, Chen P, Shi A, Wang D, Zhang B, Orazaly M, et al. Identification of quantitative trait loci for sucrose content in soybean seed. Crop Sci. 2014;54(2):554–64.CrossRef <br>28.Vaughn JN, Nelson RL, Song Q, Cregan PB, Li Z. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes Genomes Genetics. 2014;4(11):2283–94.CrossRef PubMed PubMedCentral <br>29.Hwang E-Y, Song Q, Jia G, Specht JE, Hyten DL, Costa J, et al. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics. 2014;15(1):1.CrossRef PubMed PubMedCentral <br>30.Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang E-Y, et al. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci. 2010;50(5):1950–60.CrossRef <br>31.Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, et al. Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res. 2007;14(6):271–81.CrossRef PubMed PubMedCentral <br>32.Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, Yu Y, et al. Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome. 2008;51(4):294–302.CrossRef PubMed <br>33.Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet. 2007;114(6):1081–90.CrossRef PubMed <br>34.Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, et al. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res. 2007;14(6):257–69.CrossRef PubMed PubMedCentral <br>35.Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, et al. Single-nucleotide polymorphisms in soybean. Genetics. 2003;163(3):1123–34.PubMed PubMedCentral <br>36.Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, et al. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics. 2010;11(1):38.CrossRef PubMed PubMedCentral <br>37.Ferreira A, da Silva MF, Silva L, Cruz CD. Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol. 2006;29(1):187–92.CrossRef <br>38.Palmer R, Sun H, Zhao L. Genetics and cytology of chromosome inversions in soybean germplasm. Crop Sci. 2000;40(3):683–7.CrossRef <br>39.Singh R, Hymowitz T. The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet. 1988;76(5):705–11.CrossRef PubMed <br>40.Lee WK, Kim N, Kim J, Moon J-K, Jeong N, Choi I-Y, et al. Dynamic genetic features of chromosomes revealed by comparison of soybean genetic and sequence-based physical maps. Theor Appl Genet. 2013;126(4):1103–19.CrossRef PubMed <br>41.Zhao Q, Zhang Y, Cheng Z, Chen M, Wang S, Feng Q, et al. A fine physical map of the rice chromosome 4. Genome Res. 2002;12(5):817–23.CrossRef PubMed PubMedCentral <br>42.Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4(10):e1000212.CrossRef PubMed PubMedCentral <br>43.Van Ooijen J. JoinMap 4 software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands 2006.<br>
  • 作者单位:Qijian Song (1) <br> Jerry Jenkins (2) <br> Gaofeng Jia (1) <br> David L. Hyten (3) <br> Vince Pantalone (4) <br> Scott A. Jackson (5) <br> Jeremy Schmutz (2) (6) <br> Perry B. Cregan (1) <br><br>1. USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, 20705, USA <br> 2. HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA <br> 3. Department of Agronomy & Horticulture, Center for Plant Science Innovation, 322 Keim Hall, University of Nebraska, Lincoln, NE, 68583, USA <br> 4. Department of Plant Sciences, 2431 Joe Johnson Dr., University of Tennessee, Knoxville, TN, 37996-4561, USA <br> 5. Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602-6810, USA <br> 6. Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California, 94598, USA <br>
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant inbred lines (RILs), the assembled sequence, especially in some genomic regions with sparse numbers of anchoring markers, needs to be improved. Molecular markers are being used by researchers in the soybean community, however, with the updating of the Glyma1.01 build based on the high-resolution linkage maps resulting from this research, the genome positions of these markers need to be mapped.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700