用户名: 密码: 验证码:
Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean
详细信息    查看全文
  • 作者:Xianlong Ding ; Jiajia Li ; Hao Zhang ; Tingting He ; Shaohuai Han ; Yanwei Li…
  • 关键词:Soybean (Glycine max (L.) Merr.) ; Cytoplasmic male sterility ; MicroRNA ; High ; throughput sequencing ; Degradome analysis
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,501 KB
  • 参考文献:1.Hanson MR. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–86.PubMed CrossRef
    2.Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16:S154–69.PubMed PubMedCentral CrossRef
    3.Chen LT, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol. 2014;65:579–606.PubMed CrossRef
    4.Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycinerich protein GRP162. Plant Cell. 2012;24:109–22.PubMed PubMedCentral CrossRef
    5.Horn R, Gupta KJ, Colombo N. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion. 2014;19:198–205.PubMed CrossRef
    6.Davis WH. Route to hybrid soybean production. United States Patent. 1985; US 4545146
    7.Sun H, Zhao LM, Huang M. Studies on cytoplasmic-nuclear male sterile soybean. Chin Sci Bull. 1993;38:1535-1536.
    8.Gai JY, Cui ZL, Ji DF, Ren ZJ, Ding DR. A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars. Soy Genet Newsl. 1995;22:55–8.
    9.Ding DR, Gai JY, Cui ZL, Yang SP, Qiu JX. Development and verification of the cytoplasmic-nuclear male sterile soybean line NJCMS1A and its maintainer NJCMS1B. Chin Sci Bull. 1998;44:191-92.
    10.Bai YN, Gai JY. Development of soybean cytoplasmic-nuclear male-sterile line NJCMS2A and restorability of its male ferlity. Sci Agric Sin. 2003;36:740–45.
    11.Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.PubMed CrossRef
    12.Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Na Genet. 2006;38:S31–6.CrossRef
    13.Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C. Small RNA diversity in plants and its impact in development. Curr Genomics. 2010;11:14–23.PubMed PubMedCentral CrossRef
    14.Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008;18:758–62.PubMed PubMedCentral CrossRef
    15.Shamimuzzaman M, Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics. 2012;13:310.PubMed PubMedCentral CrossRef
    16.Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics. 2008;9:160.PubMed PubMedCentral CrossRef
    17.Chen R, Hu Z, Zhang H. Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol. 2009;51:1071–9.PubMed CrossRef
    18.Zeng HQ, Zhu YY, Huang SQ, Yang ZM. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol. 2010;167:1289–97.PubMed CrossRef
    19.Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. 2011;11:5.PubMed PubMedCentral CrossRef
    20.Turner M, Yu O, Subramanian S. Genome organization and characteristics of soybean microRNAs. BMC Genomics. 2012;13:169.PubMed PubMedCentral CrossRef
    21.Hu Z, Jiang QY, Ni ZY, Chen R, Xu S, Zhang H. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis. J Integr Plant Biol. 2013;55:160–76.PubMed CrossRef
    22.Goette W, Liu ZR, Xia J, Zhang WX, Zhao PX, An YQC(Charles). Systems and evolutionary characterization of microRNAs and their underlying regulatory networks in soybean cotyledons. PLoS One. 2014;9:e86153.CrossRef
    23.Shen YO, Zhang ZM, Lin HJ, Liu HL, Chen J, Peng H, et al. Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct Integr Genomics. 2011;11:179–91.PubMed CrossRef
    24.Zhou H, Liu QJ, Li J, Jiang DG, Zhou LY, Wu P, et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012;22:649–60.PubMed PubMedCentral CrossRef
    25.Jiang JX, Lv ML, Liang Y, Ma ZM, Cao JS. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15:146.PubMed PubMedCentral CrossRef
    26.Yang JH, Liu XY, Xu BC, Zhao N, Yang XD, Zhang MF. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics. 2013;14:9.PubMed PubMedCentral CrossRef
    27.Yu JH, Zhao YX, Qin YT, Yue B, Zheng YL, Xiao HL. Discovery of microRNAs associated with the S type cytoplasmic male sterility in maize. J Integr Agr. 2013;12:229–38.CrossRef
    28.Wei MM, Wei HL, Wu M, Song MZ, Zhang JF, Yu JW, et al. Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol. 2013;13:66.PubMed PubMedCentral CrossRef
    29.Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, et al. Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics. 2010;11:S14.PubMed PubMedCentral CrossRef
    30.Kulcheski FR, de Oliveira FLV, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stress. BMC Genomics. 2011;12:307.PubMed PubMedCentral CrossRef
    31.Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA. Conservation and divergence of plant microRNA genes. Plant J. 2006;46:243–59.PubMed CrossRef
    32.Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of plant microRNAs. Plant Cell. 2008;20:3186–90.PubMed PubMedCentral CrossRef
    33.Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.PubMed PubMedCentral CrossRef
    34.Xing SP, Salinas M, Hohmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell. 2010;22:3935–50.PubMed PubMedCentral CrossRef
    35.Chambers C, Shuai B. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol. 2009;9:87.PubMed PubMedCentral CrossRef
    36.Grant-Downton R, Le TG, Schmid R, Rodriguez-Enriquez J, Hafidh S, Mehdi S, et al. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genomics. 2009;10:643.PubMed PubMedCentral CrossRef
    37.Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–25.PubMed PubMedCentral CrossRef
    38.Kou SJ, Wu XM, Liu Z, Liu YL, Xu Q, Guo WW. Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep. 2012;31:2151–63.PubMed CrossRef
    39.Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH. Identification of drought- responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics. 2011;12:367.PubMed PubMedCentral CrossRef
    40.Wei LQ, Yan LF, Wang T. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 2011;12:R53.PubMed PubMedCentral CrossRef
    41.Li DT, Wang LW, Liu X, Cui DZ, Chen TT, Zhang H, et al. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS One. 2013;8:e55107.PubMed PubMedCentral CrossRef
    42.Guo L, Lu ZH. Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem. 2010;34:165–71.PubMed CrossRef
    43.Ma ZR, Coruh C, Axtell MJ. Arabidopsis lyrata Small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell. 2010;22:1090–103.PubMed PubMedCentral CrossRef
    44.Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMed PubMedCentral CrossRef
    45.Meng YJ, Gou LF, Chen DJ, Wu P, Chen M. High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism. J Exp Bot. 2010;61:3833–7.PubMed CrossRef
    46.Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–41.PubMed PubMedCentral CrossRef
    47.Alonso-Peral MM, Li JY, Li YJ, Allen RS, Schnippenkoetter W, Ohms S, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 2010;154:757–71.PubMed PubMedCentral CrossRef
    48.Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297:2053–6.PubMed CrossRef
    49.Yang FX, Liang G, Liu DM, Yu DQ. Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco. J Plant Biol. 2009;52:475–81.CrossRef
    50.Liang G, He H, Li Y, Wang F, Yu DQ. Molecular mechanism of miR396 mediating pistil development in Arabidopsis thaliana. Plant Physiol. 2014;164:249–58.PubMed PubMedCentral CrossRef
    51.Baucher M, Moussawi J, Vandeputte OM, Monteyne D, Mol A, Pérez-Morga D, et al. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biol. 2013;15:892–8.PubMed CrossRef
    52.Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, et al. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 2000;24:457–66.PubMed CrossRef
    53.Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, et al. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet. 1999;25:253–66.PubMed CrossRef
    54.Steiner C, Bauer J, Amrhein N, Bucher M. Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. Biochim Biophys Acta. 2003;1625:123–33.PubMed CrossRef
    55.Sundström J, Engström P. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordial. Plant J. 2002;31:161–9.PubMed CrossRef
    56.Schreiber DN, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 2004;134:1069–79.PubMed PubMedCentral CrossRef
    57.Linke B, Nothnagel T, Börner T. Flower development in carrot CMS plant: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J. 2003;34:27–37.PubMed CrossRef
    58.Yang JH, Qi XH, Zhang MF, Yu JQ. MADS-box genes are associated with cytoplasmic homeosis in cytoplasmic male-sterile stem mustard as partially mimicked by specifically inhibiting mtETC. Plant Growth Regul. 2008;56:191–201.CrossRef
    59.Huang F, Xu GL, Chi YJ, Liu HC, Xue Q, Zhao TJ, et al. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biol. 2014;14:89.PubMed PubMedCentral CrossRef
    60.Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnol. 2013;31:848–52.CrossRef
    61.Ye QQ, Zhu WJ, Li L, Zhang SS, Yin YH, Ma H, et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA. 2010;107:6100–5.PubMed PubMedCentral CrossRef
    62.Qi YC, Wang HJ, Zou Y, Liu C, Liu YQ, Wang Y, et al. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Letters. 2011;585:231–9.PubMed CrossRef
    63.Su PH, Li H. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell. 2010;22:1516–31.PubMed PubMedCentral CrossRef
    64.Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, et al. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA. 1996;93:3264–8.PubMed PubMedCentral CrossRef
    65.Wang L, Qi XH, Liu GQ, Zhang YM, Chen JN. The relationship between the change of mitochondria and the fertility in CMS line of sorghum after heat shock. Acta Genet Sin. 2000;27:834–8.PubMed
    66.Leterrier M, Barroso JB, Valderrama R, Palma JM, Corpas FJ. NADP-dependent isocitrate dehydrogenase from Arabidopsis roots contributes in the mechanism of defence against the nitro-oxidative stress induced by salinity. Scientific World Journal. 2012;2012:694740.PubMed PubMedCentral CrossRef
    67.Leterrier M, Barroso JB, Palma JM, Corpas FJ. Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots. Biol Plantarum. 2012;56:705–10.CrossRef
    68.Garabagi F, Strommer J. Distinct genes produce the alcohol dehydrogenases of pollen and maternal tissues in Petunia hybrid. Biochem Genet. 2004;42:199–208.PubMed CrossRef
    69.Hajós-Novák M, Nagy AH, Dallmann G. Study of the alcohol dehydrogenase-1 (Adh1) gene in tetraploid corn: expression in the pollen grains and restriction fragment length polymorphism. Acta Biol Hung. 1997;48:87–94.PubMed
    70.Hegde R. The 24-kDa subunit of the bovine mitochondrial NADH: ubiquinone oxidoreductase is a G protein. Biochem Biophys Res Commun. 1998;244:620-9.
    71.Selinski J, Scheibe R. Pollen tube growth: where does the energy come from? Plant Signal Behav. 2014;9:12,e977200.
    72.Müller V, Cross RL. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett. 2004;576:1–4.PubMed CrossRef
    73.Zhang X, Niwa H, Rappas M. Mechanisms of ATPases--a multi-disciplinary approach. Curr Protein Pept Sci. 2004;5:89–105.PubMed CrossRef
    74.Hsu YW, Wang HJ, Hsieh MH, Hsieh HL, Jauh GY. Arabidopsis mTERF15 is required for mitochondrial nad2 intron 3 splicing and functional complex I activity. PLoS ONE. 2014;9:e112360.PubMed PubMedCentral CrossRef
    75.Ding DR, Gai JY, Cui ZL, Yang SP, Qiu JX. Development and verification of the cytoplasmic-nuclear male sterile soybean line NJCMS1A and its maintainer NJCMS1B. Chin Sci Bull. 1999;44:191–2.
    76.Ding DR, Gai JY, Cui ZL, Qiu JX. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica. 2002;124:85–91.
    77.Fan JM. Studies on cyto-morphological and cyto-chemical features of cytoplasmic-nuclear male-sterile lines of soybeans (Glycine max (L.) Merr.). M. Sc. Thesis. Nanjing: Nanjing Agricultural University press. 2003.
    78.Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.
    79.Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63:246–54.
    80.German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol. 2008;26:941–6.
    81.Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Realtime quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.
    82.Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Anal Biochem. 2010;406:185–92.
  • 作者单位:Xianlong Ding (1)
    Jiajia Li (1)
    Hao Zhang (1)
    Tingting He (1)
    Shaohuai Han (1)
    Yanwei Li (1)
    Shouping Yang (1)
    Junyi Gai (1)

    1. Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Cytoplasmic male sterility (CMS) provides crucial breeding materials that facilitate hybrid seed production in various crops, and thus plays an important role in the study of hybrid vigor (heterosis), in plants. However, the CMS regulatory network in soybean remains unclear. MicroRNAs (miRNAs) play crucial roles in flower and pollen development by targeting genes that regulate their expression in plants. To identify the miRNAs and their targets that exist in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput sequencing and degradome analysis were conducted in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700