用户名: 密码: 验证码:
Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode
详细信息    查看全文
  • 作者:Yanyan Qin ; Yilian Li ; Zhen Tian ; Yangling Wu ; Yanping Cui
  • 关键词:Pt/TiO2 nanotubes ; As(III) ; Anode electrolytic tanks ; Photoelectrocatalytic oxidation
  • 刊名:Nanoscale Research Letters
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:2,507 KB
  • 参考文献:1.Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic innatural waters. Appl Geochem 17:517–568CrossRef
    2.Zhang P, Tong M, Yuan S, Liao P (2014) Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. J Contam Hydrol 164:299–307CrossRef
    3.Onnby L, Kumar PS, Sigfridsson KGV, Wendt OY, Carlson S, Kirsebom H (2014) Improved arsenic(III) adsorption by Al2O3 nanoparticles and H2O2: evidence of oxidation to arsenic(V) from X-ray absorption spectroscopy. Chemosphere 113:151–157CrossRef
    4.Xu Z, Meng X (2009) Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation. J Hazard Mater 168:747–752CrossRef
    5.Tsimas ES, Tyrovola K, Xekoukoulotakis NP, Nikolaidis NP, Diamadopoulos E, Mantzavinos D (2009) Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions. J Hazard Mater 169:376–385CrossRef
    6.López-Muñoz MJ, Revilla A, Alcalde G (2015) Brookite TiO2-based materials: synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions. Catal Today 240:138–145CrossRef
    7.Hu J, Weng S, Zheng Z, Pei Z, Huang M, Liu P (2014) Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. J Hazard Mater 264:293–302CrossRef
    8.Kim J, Moon G, Kim S, Kim J (2015) Photocatalytic oxidation mechanism of arsenite on tungsten trioxide under visible light. J Photoch Photobio 311:35–40CrossRef
    9.Ferguson MA, Hering JG (2006) TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor. Environ Sci Technol 40:4261–4267CrossRef
    10.Ryu J, Choi WY (2006) Photocatalytic oxidation of arsenite on TiO2: understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors. Environ Sci Technol 40:7034–7039CrossRef
    11.Li Y, Cai X, Guo J, Na P (2014) UV-induced photoactive adsorption mechanism of arsenite by anatase TiO2 with high surface hydroxyl group density. Colloids Surf A Physicochem Eng Asp 462:202–210CrossRef
    12.Lee S, Kim K, Choi H, Takahashi Y (2015) Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide. J Environ Manage 161:228–236CrossRef
    13.Bissen M, Vieillard-Baron MM, Schindelin AJ, Frimmel FH (2001) TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44:751–757CrossRef
    14.Sun B, Shi T, Peng Z, Sheng W, Jiang T, Liao G (2013) Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res Lett 8:462CrossRef
    15.Shi W, Yang W, Li Q, Gao S, Shang P, Shang JK (2012) The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance. Nanoscale Res Lett 7:1–9CrossRef
    16.Xu J, Xiao X, Stepanov AL, Ren F, Wu W, Cai G et al (2013) Efficiency enhancements in Ag nanoparticles-SiO2-TiO2 sandwiched structure via plasmonic effect-enhanced light capturing. Nanoscale Res Lett 8:73CrossRef
    17.Sun H, Zhao P, Zhang F, Liu Y, Hao J (2015) Ag2S/CdS/TiO2 nanotube array films with high photocurrent density by spotting sample method. Nanoscale Res Lett 10:382CrossRef
    18.Chen Y, Liu B, Chen J, Tian L, Huang L, Tu M et al (2015) Structure design and photocatalytic properties of one-dimensional SnO2-TiO2 composites. Nanoscale Res Lett 10:1–6CrossRef
    19.Li Y, Cai X, Guo J, Zhou S, Na P (2015) Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation. Appl Surf Sci 324:179–187CrossRef
    20.Yu L, Peng X, Ni F, Li J, Wang D, Luan Z (2013) Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J Hazard Mater 246–247:10–17CrossRef
    21.Cai X, Li Y, Guo J, Liu S, Na P (2014) Mn(IV) promotion mechanism for the photocatalytic oxidation of arsenite by anatase-TiO2. Chem Eng J 248:9–17CrossRef
    22.Vaiano V, Iervolino G, Sannino D, Rizzo L, Sarno G, Farina A (2014) Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2. Appl Catal Environ 160–161:247–253CrossRef
    23.Li X, Leng W (2012) Highly enhanced dye sensitized photocatalytic oxidation of arsenite over TiO2 under visible light by I− as an electron relay. Electrochem Commun 22:185–188CrossRef
    24.Li X, Leng W, Cao C (2013) Quantitatively understanding the mechanism of highly enhanced regenerated dye sensitized photooxidation of arsenite over nanostructured TiO2 electrodes under visible light by I−. J Electroanal Chem 703:70–79CrossRef
    25.Xu G, Liu H, Wang J, Lv J, Zheng Z, Wu Y (2014) Photoelectrochemical performances and potential applications of TiO2 nanotube arrays modified with Ag and Pt nanoparticles. Electrochim Acta 121:194–202CrossRef
    26.Chen H, Ku Y, Kuo Y (2007) Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis. Water Res 41:2069–2078CrossRef
    27.Huang LH, Sun C, Liu YL (2007) Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl Surf Sci 253:7029–7035CrossRef
    28.Fei H, Leng WH, Li X, Cheng XF, Xu YM, Zhang JQ et al (2011) Photocatalytic oxidation of arsenite over TiO2: is superoxide the main oxidant in normal air-saturated aqueous solutions? Environ Sci Technol 45:4532–4539CrossRef
    29.Li X, Leng W (2013) Regenerated dye-sensitized photocatalytic oxidation of arsenite over nanostructured TiO2 films under visible light in normal aqueous solutions: an insight into the mechanism by simultaneous (photo)electrochemical measurements. J Phys Chem C 117:750–762CrossRef
    30.Hou Y, Li X, Zou X, Quan X, Chen G (2009) Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43:858–863CrossRef
    31.Wu L, Li F, Xu Y, Zhang JW, Zhang D, Li G et al (2015) Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl Catal B-Environ 164:217–224CrossRef
    32.Su Y, Deng Y (2011) Effect of structure on the photocatalytic activity of Pt-doped TiO2 nanotubes. Appl Surf Sci 257:9791–9795CrossRef
    33.Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
    34.Panayotov DA, Morris JR (2008) Catalytic degradation of a chemical warfare agent simulant: reaction mechanisms on TiO2-supported Au nanoparticles. J Phys Chem C 112:7496–7502CrossRef
    35.Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173CrossRef
    36.Guo Z, Prezhdo OV, Hou T, Chen X, Lee S, Li Y (2014) Fast energy relaxation by trap states decreases electron mobility in TiO2 nanotubes: time-domain Ab initio analysis. J Phys Chem Lett 5:1642–1647CrossRef
    37.Vijayan BK, Dimitrijevic NM, Wu J, Gray KA (2010) The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C 114:21262–21269CrossRef
    38.Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48:1103–1111CrossRef
    39.Yen CH, Shimizu K, Lin Y, Bailey F, Cheng IF, Wai CM (2007) Chemical fluid deposition of pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy Fuel 21:2268–2271CrossRef
    40.Wen D, Guo S, Zhai J, Deng L, Ren W, Dong S (2009) Pt nanoparticles supported on TiO2 colloidal spheres with nanoporous surface: preparation and use as an enhancing material for biosensing applications. J Phys Chem C 113:13023–13028CrossRef
    41.Gan WY, Friedmann D, Amala R, Zhang S, Chiang K, Zhao H (2010) A comparative study between photocatalytic and photoelectrocatalytic properties of Pt deposited TiO2 thin films for glucose degradation. Chem Eng J 158:482–488CrossRef
    42.Lee J, Choi W (2005) Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state. J Phys Chem B 109:7399CrossRef
    43.Paschoal FMM, Anderson MA, Zanoni MVB (2009) The photoelectrocatalytic oxidative treatment of textile wastewater containing disperse dyes. Desalination 249:1350–1355CrossRef
    44.Oliveira HG, Nery DC, Longo C (2010) Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes. Appl Catal B-Environ 93:205–211CrossRef
    45.Grzechulska J, Morawski AW (2002) Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl Catal B-Environ 36:45–51CrossRef
    46.Yoon SH, Lee JH (2005) Oxidation mechanism of As(III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism. Environ Sci Technol 39:9695–9701CrossRef
    47.Leng WH, Zhu WC, Ni J, Zhang Z, Zhang JQ, Cao CN (2006) Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl Catal Gen 300:24–35CrossRef
    48.Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878CrossRef
    49.Sharma VK, Dutta PK, Ray AK (2007) Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. J Environ Sci Heal A 42:997–1004CrossRef
    50.Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56:1561–1570CrossRef
  • 作者单位:Yanyan Qin (1)
    Yilian Li (1)
    Zhen Tian (1)
    Yangling Wu (1)
    Yanping Cui (1)

    1. School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light (λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system. Keywords Pt/TiO2 nanotubes As(III) Anode electrolytic tanks Photoelectrocatalytic oxidation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700