用户名: 密码: 验证码:
Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life
详细信息    查看全文
  • 关键词:Araras Group ; Brazilian Pantanal wetland ; Corumbá Group ; Jacadigo Group ; Precambrian
  • 刊名:The Handbook of Environmental Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:37
  • 期:1
  • 页码:1-21
  • 全文大小:987 KB
  • 参考文献:1.Almeida FFM (1967) Origem e evolução da Plataforma Brasileira. Bol do DNPM Rio de Janeiro
    2.Tohver E, Trindade RIF, Solum JG et al (2010) Closing the Clymene ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38(3):267–270CrossRef
    3.Cordani UG et al (2010) The Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: geochronological evolution, correlations and tectonic implications for Rodinia and Gondwana. Am J Sci 310:981–1023CrossRef
    4.Amthor JE, Grotzinger JP, Schröder S et al (2003) Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:431–434CrossRef
    5.Grotzinger JP et al (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604CrossRef
    6.Cordani UG, Tassinari CCG, Rolim DR (2005) The basement of the Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: a geochronological correlation with the tectonic provinces of the south-western Amazonian Craton. In: Abstracts of Gondwana 12, Mendoza, p 112
    7.Alvarenga CJS, Trompette R (1993) Evolução Tectônica Brasiliana da Faixa Paraguai: a Estruturação da Região de Cuiabá. Rev Bras Geosci 23(1):18–30
    8.Alvarenga CJS et al (2000) Paraguai and Araguaia belts. In: Cordani UG et al (eds) Tectonic evolution of South America. FINEP, Rio de Janeiro, pp 183–193
    9.Campanha GAC, Warren LV, Boggiani PC et al (2010) Structural analysis of the Itapucumi Group in the Vallemi region, northern Paraguay: evidence of a new Brasiliano – Pan-African mobile belt. J S Am Earth Sci 30(1):1–11CrossRef
    10.Kröner A, Cordani UG (2003) African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375:325–352CrossRef
    11.Araújo HJT, Santos Neto A, Trindade CAH et al (1982) Geologia. In: Projeto RADAMBRASIL, Folha SF 21, Campo Grande. Escala 1:1.00.000. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro, vol 28, pp 23–124
    12.Tassinari CCG et al (1996) Geochronological systematics on basement rocks from the Rio Negro-Juruena Province (Amazon CRio Alegre Terrainon) and tectonic implications. Int Geol Rev 38:1161–1175CrossRef
    13.Cordani UG, Teixeira W (2007) Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher RD Jr et al (eds) The 4D framework of continental crust, vol 200. GSA Memoir, Boulder, pp 297–320CrossRef
    14.Tohver E et al (2002) Paleogeography of the Amazon craton at 1,2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth Planet Sci Lett 199:185–200CrossRef
    15.Cohen KM et al (2014) The ICS International Chronostratigraphic Chart. Episodes 36:199–204
    16.Cox GM, Halverson GP, Minarik WG et al (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249CrossRef
    17.Halverson GP et al (2005) Towards a Neoproterozoic composite carbon isotope record. Geol Soc Am Bull 117:1181–1207CrossRef
    18.Li ZX et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210CrossRef
    19.Tohver E, D’Agrella-Filho MS, Trindade RIF (2006) Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Res 147:193–222CrossRef
    20.Trindade RIF et al (2006) Paleomagnetism of early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244:361–377CrossRef
    21.Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages and terminal Proterozoic earth history – an exemple from the Olenek Uplift, northeastern Sibéria. Precambrian Res 73:251–270
    22.Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere – a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52
    23.Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28:17–33CrossRef
    24.Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14(3):129–155CrossRef
    25.Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49CrossRef
    26.Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Res 100:3–20CrossRef
    27.Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238CrossRef
    28.Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology 31:459–462CrossRef
    29.Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137CrossRef
    30.Tohver E et al (2005) Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Res 137:35–59CrossRef
    31.Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65:1–73CrossRef
    32.Trompette R (2000) Gondwana evolution: its assembly at around 600 Ma. C R Acad Sci Paris 330:305–315
    33.Hoffman PF et al (1998) A Neoproterozoic snowball Earth. Science 81:1342–1346CrossRef
    34.Campanha GAC, Boggiani PC, Sallun WF et al (2011) A faixa de dobramento Paraguai na Serra da Bodoquena e depressão do Rio Miranda, Mato Grosso do Sul. Rev Geol USP 11(3):79–96
    35.Brain CKB, Prave AR, Hoffmann KH et al (2012) The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci 108(1–2):658
    36.Erwin DH (2006) Dates end rates: temporal resolution in the deep time stratigraphic record. Annu Rev Earth Planet Sci 34:569–590CrossRef
    37.Grotzinger JP, James NP (2000) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving precambrian world, vol 67, SEPM special publication. Tulsa, SEPM, pp 3–20CrossRef
    38.Xiao S, Kaufman AJ (2006) Neoproterozoic geobiology and paleobiology, vol 27, Topics in geobiology series. Springer, Berlin, p 300CrossRef
    39.Alvarenga CJS, Trompette R (1992) Glacially influenced sedimentation in the later Proterozoic of the Paraguay Belt (Mato Grosso, Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 92:85–105CrossRef
    40.Babinski M, Boggiani PC, Trindade RIF et al (2013) Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Res 23:988–997CrossRef
    41.Freitas BT, Warren LV, Boggiani PC et al (2011) Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil. Sediment Geol 238(1–2):48–70CrossRef
    42.Almeida FFM (1965) Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Bol Div Geol e Mineral 219:1–96
    43.Luz JS et al (1980) Projeto Coxipó. Goiania, DNPM/CPRM 1:136
    44.Tokashiki CC, Saes GS (2008) Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabána, Mato Grosso. Rev Bras Geosci 38(4):661–675
    45.Dorr II JVN (1945) Manganese and iron deposits of Morro do Urucum, Mato Grosso, Brazil. Bull US Geol Surv 946A:47
    46.Almeida FFM (1946) Origem dos minérios de ferro e manganês de Urucum: Boletim da Divisão de Geologia e Mineralogia. DNPM 119:1–58.
    47.Urban H, Stribrny B, Lippolt H (1992) Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil. Econ Geol 87:1375–1392CrossRef
    48.DNPM (2012) Sumário Mineral 32:136
    49.Piacentini T, Vasconcelos PM, Farley KA (2013) 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Res 228:48–62CrossRef
    50.O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeont 9/10:1441–1456
    51.Alvarenga CJS, Santos RV, Dantas EL (2004) C–O–Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Res 131:1–21CrossRef
    52.Nogueira ACR et al (2003) Soft- sediment deformation at the Neoproterozoic Puga cap carbonate (southwestern Amazon Craton, Brazil): conformation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31:613–616CrossRef
    53.Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–127CrossRef
    54.Nogueira ACR (2003) A plataforma carbonática Araras no sudoeste do Cráton Amazônico, Mato Grosso: estratigrafia, contexto paleoambiental e correlação com os eventos glaciais do Neoproterozóico. Ph.D. thesis, University of São Paulo
    55.Hidalgo RLL (2007) Vida após as glaciações globais neoproterozoicas: um estudo fossilífero de capas carbonáticas dos crátons do São Francisco e Amazônico. Ph.D. thesis, University of São Paulo
    56.Babinski M (2011) Geocronologia das glaciações criogenianas do Brasil central. Habilitation thesis, University of São Paulo
    57.Boggiani PC (1998) Análise Estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. Ph.D. thesis, University of São Paulo
    58.Warren LW (2011) Tectônica e sedimentação do Grupo Itapucumi (Ediacarano, Paraguay Setentrional). Ph.D. thesis, University of São Paulo
    59.Boggiani PC, Fairchild TR, Coimbra AM (1993) O Grupo Corumbá (Neoproterozóico-Cambriano) na região Central da Serra da Bodoquena, Mato Grosso do Sul (Faixa Paraguai). Rev Bras Geoci 23(3):301–305
    60.Boggiani PC, Ferreira VP, Sial NA et al (2003) The cap carbonate of the Puga Hill (Central South America) in the context of the post-Varanger Glaciation. In: Short papers of the IV South American symposium on isotope geology, Salvador, pp 324–327
    61.Beurlen K, Sommer FW (1957) Observações estratigráficas e paleontológicas sobre o Calcário Corumbá. Relatório do Departamento Nacional de Produção Mineral. DNPM 168:1–35
    62.Hahn G, Hahn R, Leonardos OH et al (1982) Körporlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol et Paleo 16:1–18
    63.Zaine MF, Fairchild TR (1985) Comparison of Aulophycus lucianoi Beurlen & Sommerfrom Ladario (MS) and the genus Cloudina Germs, Ediacaran of Namibia. Ana Acad Bras Cie 57:130
    64.Boggiani PC, Gaucher C, Sial AN et al (2010) Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res 182:382–401CrossRef
    65.Gaucher C, Boggiani PC, Sprechmann P et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278CrossRef
    66.Babinski M, Boggiani PC, Fanning CM (2008) U-PB SHRIMP geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, Southern Paraguay Belt, Brazil. In: Book of abstracts of the VI South American symposium on isotope geology, San Carlos de Bariloche, p 160
    67.Van Iten H et al (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 1–14
    68.Fairchild TR et al (2012) Evolution of Precambrian life in the Brazilian geological record. Int J Astrobiol 11(4):309–323CrossRef
    69.Warren LV, Simões MG, Fairchild TR et al (2013) Origin and impact of the oldest metazoan bioclastic sediments. Geology 41:507–510CrossRef
    70.Germs GJB (1972) New shelly fossils from Nama Group, South West Africa. Am J Sci 272:752–761CrossRef
    71.Vinn O, Zatón M (2012) Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets de Geologie [Notebooks on Geology] - Article 2012/03(CG2012-A03):39–47
    72.Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci 290:261–294CrossRef
    73.Pacheco MLAF, Leme JM, Machado AF (2011) Taphonomic analysis and geometric modeling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J Taphon 9:269–283
    74.Warren LV, Fairchild TR, Gaucher C et al (2011) Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23:382–389CrossRef
    75.Van Iten H (1992) Morphology and phylogenetic significance of the corners and midlines of the conulariid test. Palaeontology 35:335–358
    76.Warren LV, Pacheco MLAF, Fairchild TR et al (2012) The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40:691–694CrossRef
    77.Babcock LE, Grunow AM, Sadowski AR, Leslie SA (2005) Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 220:7–18CrossRef
    78.Leme JM, Simões MG, Van Iten HV (2010) Phylogenetic systematics and evolution of conulariids. Lap Lambert Academic, Saarbrücken
    79.Wood RA (2011) Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190CrossRef
    80.Pratt BR (1982) Stromatolite decline – a reconsideration. Geology 10:512–515CrossRef
    81.Almeida FFM (1985) Alguns problemas das relações geológicas entre o Craton Amazônico e as faixas de dobramentos marginais à leste. In: 2° Atas do Simpósio de Geologia do Centro Oeste, Goiânia, pp 3–14
    82.Brito Neves BB, Campos Neto MC, Fuck AF (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22(3):155–166
    83.Jones JP (1985) The southern border of the Guaporé shield in western Brazil and Bolivia: an interpretation of its geologic evolution. Precambrian Res 28:111–135CrossRef
    84.O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeontol 9/10:1441–1456
    85.Alkmin FF, Marshak S, Fonseca MA (2001) Assembling West Gondwana in the Neoproterozoic: clues from the São Francisco Craton region, Brazil. Geology 29:319–322CrossRef
    86.Trompette R, Alvarenga CJS, Walde D (1998) Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of Jacadigo Group. J S Am Earth Sci 11:587–597CrossRef
    87.Warren LV, Quaglio F, Riccomini C, Simões MG et al (2014) The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. Geology 42:391–394CrossRef
    88.Cawood PA, Leitch EC (1998) Going down: subduction initiation in the proto-Pacific and relationship to end Neoproterozoic global events. J Afr Earth Sci 27:42
    89.Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R, Hoffman KH (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344:1504–1506CrossRef
  • 作者单位:Lucas V. Warren (5)
    Fernanda Quaglio (5)
    Marcello G. Simões (6)
    Bernardo T. Freitas (7)
    Mario L. Assine (5)
    Claudio Riccomini (7)

    5. Applied Geology Department, Geosciences and Exact Sciences Institute, São Paulo State University, Av. 24A, 1515, Rio Claro, 13506-900, Brazil
    6. Zoology Department, Bioscences Institute, São Paulo State University, Distrito de Rubião Júnior, Botucatu, 18618-000, Brazil
    7. Geosciences Institute, University of São Paulo (USP), Rua do Lago, 562, São Paulo, 05508-080, Brazil
  • 丛书名:Dynamics of the Pantanal Wetland in South America
  • ISBN:978-3-319-18735-8
  • 刊物类别:Earth and Environmen
  • 刊物主题:Environment
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Geoecology and Natural Processes
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Berlin / Heidelberg
文摘
Underneath the wetlands of the Brazilian Pantanal are hidden key ecological and geological events of the history of our planet. In this chapter we show that Precambrian rocks forming the hills and mountains surrounding the Pantanal floodplains record (a) the cyclic process of supercontinents assembling, (b) the origin of complex life forms on Earth, and (c) the past global climate changes. It further unveiled the most recent geochronological data and paleontological and tectonic discoveries for modeling the evolution of the Pantanal basement rocks. Various questions are also addressed, including the formation time of the Rodinia and Gondwana supercontinents, the triggering factor leading to animal skeleton biomineralization, and the “Snowball Earth Hypothesis.”

Keywords Araras Group Brazilian Pantanal wetland Corumbá Group Jacadigo Group Precambrian Page %P Close Plain text Look Inside Chapter Metrics Provided by Bookmetrix Reference tools Export citation EndNote (.ENW) JabRef (.BIB) Mendeley (.BIB) Papers (.RIS) Zotero (.RIS) BibTeX (.BIB) Add to Papers Other actions About this Book Reprints and Permissions Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn Supplementary Material (0) References (89) References1.Almeida FFM (1967) Origem e evolução da Plataforma Brasileira. Bol do DNPM Rio de Janeiro2.Tohver E, Trindade RIF, Solum JG et al (2010) Closing the Clymene ocean and bending a Brasiliano belt: evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology 38(3):267–270CrossRef3.Cordani UG et al (2010) The Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: geochronological evolution, correlations and tectonic implications for Rodinia and Gondwana. Am J Sci 310:981–1023CrossRef4.Amthor JE, Grotzinger JP, Schröder S et al (2003) Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:431–434CrossRef5.Grotzinger JP et al (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598–604CrossRef6.Cordani UG, Tassinari CCG, Rolim DR (2005) The basement of the Rio Apa Craton in Mato Grosso do Sul (Brazil) and northern Paraguay: a geochronological correlation with the tectonic provinces of the south-western Amazonian Craton. In: Abstracts of Gondwana 12, Mendoza, p 1127.Alvarenga CJS, Trompette R (1993) Evolução Tectônica Brasiliana da Faixa Paraguai: a Estruturação da Região de Cuiabá. Rev Bras Geosci 23(1):18–308.Alvarenga CJS et al (2000) Paraguai and Araguaia belts. In: Cordani UG et al (eds) Tectonic evolution of South America. FINEP, Rio de Janeiro, pp 183–1939.Campanha GAC, Warren LV, Boggiani PC et al (2010) Structural analysis of the Itapucumi Group in the Vallemi region, northern Paraguay: evidence of a new Brasiliano – Pan-African mobile belt. J S Am Earth Sci 30(1):1–11CrossRef10.Kröner A, Cordani UG (2003) African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375:325–352CrossRef11.Araújo HJT, Santos Neto A, Trindade CAH et al (1982) Geologia. In: Projeto RADAMBRASIL, Folha SF 21, Campo Grande. Escala 1:1.00.000. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro, vol 28, pp 23–12412.Tassinari CCG et al (1996) Geochronological systematics on basement rocks from the Rio Negro-Juruena Province (Amazon CRio Alegre Terrainon) and tectonic implications. Int Geol Rev 38:1161–1175CrossRef13.Cordani UG, Teixeira W (2007) Proterozoic accretionary belts in the Amazonian Craton. In: Hatcher RD Jr et al (eds) The 4D framework of continental crust, vol 200. GSA Memoir, Boulder, pp 297–320CrossRef14.Tohver E et al (2002) Paleogeography of the Amazon craton at 1,2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth Planet Sci Lett 199:185–200CrossRef15.Cohen KM et al (2014) The ICS International Chronostratigraphic Chart. Episodes 36:199–20416.Cox GM, Halverson GP, Minarik WG et al (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249CrossRef17.Halverson GP et al (2005) Towards a Neoproterozoic composite carbon isotope record. Geol Soc Am Bull 117:1181–1207CrossRef18.Li ZX et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210CrossRef19.Tohver E, D’Agrella-Filho MS, Trindade RIF (2006) Paleomagnetic record of Africa and South America for the 1200–500 Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Res 147:193–222CrossRef20.Trindade RIF et al (2006) Paleomagnetism of early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth Planet Sci Lett 244:361–377CrossRef21.Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages and terminal Proterozoic earth history – an exemple from the Olenek Uplift, northeastern Sibéria. Precambrian Res 73:251–27022.Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere – a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–5223.Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28:17–33CrossRef24.Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14(3):129–155CrossRef25.Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49CrossRef26.Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Res 100:3–20CrossRef27.Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238CrossRef28.Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball Earth or aftermath of the Acraman impact? Geology 31:459–462CrossRef29.Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137CrossRef30.Tohver E et al (2005) Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Res 137:35–59CrossRef31.Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65:1–73CrossRef32.Trompette R (2000) Gondwana evolution: its assembly at around 600 Ma. C R Acad Sci Paris 330:305–31533.Hoffman PF et al (1998) A Neoproterozoic snowball Earth. Science 81:1342–1346CrossRef34.Campanha GAC, Boggiani PC, Sallun WF et al (2011) A faixa de dobramento Paraguai na Serra da Bodoquena e depressão do Rio Miranda, Mato Grosso do Sul. Rev Geol USP 11(3):79–9635.Brain CKB, Prave AR, Hoffmann KH et al (2012) The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. S Afr J Sci 108(1–2):65836.Erwin DH (2006) Dates end rates: temporal resolution in the deep time stratigraphic record. Annu Rev Earth Planet Sci 34:569–590CrossRef37.Grotzinger JP, James NP (2000) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving precambrian world, vol 67, SEPM special publication. Tulsa, SEPM, pp 3–20CrossRef38.Xiao S, Kaufman AJ (2006) Neoproterozoic geobiology and paleobiology, vol 27, Topics in geobiology series. Springer, Berlin, p 300CrossRef39.Alvarenga CJS, Trompette R (1992) Glacially influenced sedimentation in the later Proterozoic of the Paraguay Belt (Mato Grosso, Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 92:85–105CrossRef40.Babinski M, Boggiani PC, Trindade RIF et al (2013) Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Res 23:988–997CrossRef41.Freitas BT, Warren LV, Boggiani PC et al (2011) Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil. Sediment Geol 238(1–2):48–70CrossRef42.Almeida FFM (1965) Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Bol Div Geol e Mineral 219:1–9643.Luz JS et al (1980) Projeto Coxipó. Goiania, DNPM/CPRM 1:13644.Tokashiki CC, Saes GS (2008) Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabána, Mato Grosso. Rev Bras Geosci 38(4):661–67545.Dorr II JVN (1945) Manganese and iron deposits of Morro do Urucum, Mato Grosso, Brazil. Bull US Geol Surv 946A:4746.Almeida FFM (1946) Origem dos minérios de ferro e manganês de Urucum: Boletim da Divisão de Geologia e Mineralogia. DNPM 119:1–58.47.Urban H, Stribrny B, Lippolt H (1992) Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil. Econ Geol 87:1375–1392CrossRef48.DNPM (2012) Sumário Mineral 32:13649.Piacentini T, Vasconcelos PM, Farley KA (2013) 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Res 228:48–62CrossRef50.O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeont 9/10:1441–145651.Alvarenga CJS, Santos RV, Dantas EL (2004) C–O–Sr isotopic stratigraphy of cap carbonates overlying Marinoan-age glacial diamictites in the Paraguay Belt, Brazil. Precambrian Res 131:1–21CrossRef52.Nogueira ACR et al (2003) Soft- sediment deformation at the Neoproterozoic Puga cap carbonate (southwestern Amazon Craton, Brazil): conformation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31:613–616CrossRef53.Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–127CrossRef54.Nogueira ACR (2003) A plataforma carbonática Araras no sudoeste do Cráton Amazônico, Mato Grosso: estratigrafia, contexto paleoambiental e correlação com os eventos glaciais do Neoproterozóico. Ph.D. thesis, University of São Paulo55.Hidalgo RLL (2007) Vida após as glaciações globais neoproterozoicas: um estudo fossilífero de capas carbonáticas dos crátons do São Francisco e Amazônico. Ph.D. thesis, University of São Paulo56.Babinski M (2011) Geocronologia das glaciações criogenianas do Brasil central. Habilitation thesis, University of São Paulo57.Boggiani PC (1998) Análise Estratigráfica da Bacia Corumbá (Neoproterozoico) – Mato Grosso do Sul. Ph.D. thesis, University of São Paulo58.Warren LW (2011) Tectônica e sedimentação do Grupo Itapucumi (Ediacarano, Paraguay Setentrional). Ph.D. thesis, University of São Paulo59.Boggiani PC, Fairchild TR, Coimbra AM (1993) O Grupo Corumbá (Neoproterozóico-Cambriano) na região Central da Serra da Bodoquena, Mato Grosso do Sul (Faixa Paraguai). Rev Bras Geoci 23(3):301–30560.Boggiani PC, Ferreira VP, Sial NA et al (2003) The cap carbonate of the Puga Hill (Central South America) in the context of the post-Varanger Glaciation. In: Short papers of the IV South American symposium on isotope geology, Salvador, pp 324–32761.Beurlen K, Sommer FW (1957) Observações estratigráficas e paleontológicas sobre o Calcário Corumbá. Relatório do Departamento Nacional de Produção Mineral. DNPM 168:1–3562.Hahn G, Hahn R, Leonardos OH et al (1982) Körporlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol et Paleo 16:1–1863.Zaine MF, Fairchild TR (1985) Comparison of Aulophycus lucianoi Beurlen & Sommerfrom Ladario (MS) and the genus Cloudina Germs, Ediacaran of Namibia. Ana Acad Bras Cie 57:13064.Boggiani PC, Gaucher C, Sial AN et al (2010) Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res 182:382–401CrossRef65.Gaucher C, Boggiani PC, Sprechmann P et al (2003) Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá Groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res 120:241–278CrossRef66.Babinski M, Boggiani PC, Fanning CM (2008) U-PB SHRIMP geochronology and isotope chemostratigraphy (C, O, Sr) of the Tamengo Formation, Southern Paraguay Belt, Brazil. In: Book of abstracts of the VI South American symposium on isotope geology, San Carlos de Bariloche, p 16067.Van Iten H et al (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 1–1468.Fairchild TR et al (2012) Evolution of Precambrian life in the Brazilian geological record. Int J Astrobiol 11(4):309–323CrossRef69.Warren LV, Simões MG, Fairchild TR et al (2013) Origin and impact of the oldest metazoan bioclastic sediments. Geology 41:507–510CrossRef70.Germs GJB (1972) New shelly fossils from Nama Group, South West Africa. Am J Sci 272:752–761CrossRef71.Vinn O, Zatón M (2012) Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets de Geologie [Notebooks on Geology] - Article 2012/03(CG2012-A03):39–4772.Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci 290:261–294CrossRef73.Pacheco MLAF, Leme JM, Machado AF (2011) Taphonomic analysis and geometric modeling for the reconstruction of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Group, Brazil). J Taphon 9:269–28374.Warren LV, Fairchild TR, Gaucher C et al (2011) Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23:382–389CrossRef75.Van Iten H (1992) Morphology and phylogenetic significance of the corners and midlines of the conulariid test. Palaeontology 35:335–35876.Warren LV, Pacheco MLAF, Fairchild TR et al (2012) The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri. Geology 40:691–694CrossRef77.Babcock LE, Grunow AM, Sadowski AR, Leslie SA (2005) Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 220:7–18CrossRef78.Leme JM, Simões MG, Van Iten HV (2010) Phylogenetic systematics and evolution of conulariids. Lap Lambert Academic, Saarbrücken79.Wood RA (2011) Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190CrossRef80.Pratt BR (1982) Stromatolite decline – a reconsideration. Geology 10:512–515CrossRef81.Almeida FFM (1985) Alguns problemas das relações geológicas entre o Craton Amazônico e as faixas de dobramentos marginais à leste. In: 2° Atas do Simpósio de Geologia do Centro Oeste, Goiânia, pp 3–1482.Brito Neves BB, Campos Neto MC, Fuck AF (1999) From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African cycle and orogenic collage. Episodes 22(3):155–16683.Jones JP (1985) The southern border of the Guaporé shield in western Brazil and Bolivia: an interpretation of its geologic evolution. Precambrian Res 28:111–135CrossRef84.O’Connor EA, Walde DGH (1986) Recognition of an Eocambriam orogenic cycle in SW Brazil and SE Bolivia. Zbl Geol Palaeontol 9/10:1441–145685.Alkmin FF, Marshak S, Fonseca MA (2001) Assembling West Gondwana in the Neoproterozoic: clues from the São Francisco Craton region, Brazil. Geology 29:319–322CrossRef86.Trompette R, Alvarenga CJS, Walde D (1998) Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of Jacadigo Group. J S Am Earth Sci 11:587–597CrossRef87.Warren LV, Quaglio F, Riccomini C, Simões MG et al (2014) The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway. Geology 42:391–394CrossRef88.Cawood PA, Leitch EC (1998) Going down: subduction initiation in the proto-Pacific and relationship to end Neoproterozoic global events. J Afr Earth Sci 27:4289.Penny AM, Wood R, Curtis A, Bowyer F, Tostevin R, Hoffman KH (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344:1504–1506CrossRef About this Chapter Title Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life Book Title Dynamics of the Pantanal Wetland in South America Pages pp 1-21 Copyright 2016 DOI 10.1007/698_2014_326 Print ISBN 978-3-319-18734-1 Online ISBN 978-3-319-18735-8 Series Title The Handbook of Environmental Chemistry Series Volume 37 Series ISSN 1867-979X Publisher Springer International Publishing Copyright Holder Springer International Publishing Switzerland Additional Links About this Book Topics Environmental Chemistry Water Quality/Water Pollution Hydrogeology Analytical Chemistry Geotechnical Engineering & Applied Earth Sciences Climate Change/Climate Change Impacts Keywords Araras Group Brazilian Pantanal wetland Corumbá Group Jacadigo Group Precambrian Industry Sectors Chemical Manufacturing eBook Packages Earth and Environmental Science Editors Ivan Bergier (3) Mario Luis Assine (4) Editor Affiliations 3. Laboratório de Conversão de Biomassa, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) 4. IGCE - Departamento de Geologia Aplicada, UNESP- Universidade Estadual Paulista Authors Lucas V. Warren (5) Fernanda Quaglio (5) Marcello G. Simões (6) Bernardo T. Freitas (7) Mario L. Assine (5) Claudio Riccomini (7) Author Affiliations 5. Applied Geology Department, Geosciences and Exact Sciences Institute, São Paulo State University, Av. 24A, 1515, Rio Claro, 13506-900, Brazil 6. Zoology Department, Bioscences Institute, São Paulo State University, Distrito de Rubião Júnior, Botucatu, 18618-000, Brazil 7. Geosciences Institute, University of São Paulo (USP), Rua do Lago, 562, São Paulo, 05508-080, Brazil Continue reading... To view the rest of this content please follow the download PDF link above.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700