用户名: 密码: 验证码:
Self-healing properties of poly(ethylene-co-vinyl acetate)
详细信息    查看全文
  • 作者:Ryuya Osato ; Takumi Sako ; Jiraporn Seemork…
  • 关键词:Ethylene ; co ; vinyl acetate copolymer ; Self ; healing ; Rheology ; Crystallinity
  • 刊名:Colloid & Polymer Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:294
  • 期:3
  • 页码:537-543
  • 全文大小:921 KB
  • 参考文献:1.Wool RP (1994) Polymer interfaces: structure and strength. Hanser Gardener, Cincinnati
    2.Wool RP (2008) Self-healing materials: a review. Soft Matter 4:400–418CrossRef
    3.Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials; a review of recent developments. Prog Polym Sci 33:479–522CrossRef
    4.Blaszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef
    5.Murphy B, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35:223–251CrossRef
    6.Zhang MQ, Rong MZ (2010) Self-healing polymers and polymer composites. Wiley, New York
    7.Yamaguchi M, Maeda R, Kobayashi R, Wada T, Ono S, Nobukawa S (2012) Autonomic healing and welding by interdiffusion of dangling chains in weak gel. Polym Int 61:9–16CrossRef
    8.Binder WH (2013) Self-healing polymers, from principles to applications. Wiley-VCH, WeinheimCrossRef
    9.Yamaguchi M, Ono S, Terano M (2007) Self-repairing property of polymer network with dangling chains. Mater Lett 61:1396–1399CrossRef
    10.Yamaguchi M, Ono S, Okamoto K (2009) Interdiffusion of dangling chains in weak gel and its application to self-repairing material. Mater Sci Eng B 162:189–194CrossRef
    11.Summers JW (1981) The nature of poly(vinyl chloride) crystallinity—the microdomain structure. J Vinyl Technol 3:107–110CrossRef
    12.Yamaguchi M (2001) Flow instability in capillary extrusion of plasticized poly(vinyl chloride). J Appl Polym Sci 82:1277–1283CrossRef
    13.Nobukawa S, Shimada H, Aoki Y, Miyagawa A, Doan VA, Yoshimura H, Tachikawa Y, Yamaguchi M (2014) Extraordinary wavelength dispersion of birefringence in cellulose triacetate film with anisotropic nanopores. Polymer 55:3247–3253CrossRef
    14.Yamaguchi M, Wakabayashi T (2006) Rheological properties and processability of chemically modified poly(ethylene terephthalate-co-ethylene isophthalate). Adv Polym Technol 25:236–241CrossRef
    15.Yamaguchi M, Wakabayashi T, Kanoh T (2008) Effect of mixing conditions on rheological and optical properties for chemically modified poly(ethylene terephthalate-co-ethylene isophthalate). J Appl Polym Sci 107:2665–2670CrossRef
    16.Rujirek W, Hachiya Y, Endo T, Nobukawa S, Yamaguchi M (2015) Anomalous transfer phenomenon of carbon nanotube in the blend of poly(ethylene terephthalate) and polycarbonate. Compos Part B 78:409–414CrossRef
    17.Yamane H, Sakai K, Takano M, Takahashi M (2004) Poly(D-lactic acid) as a rheological modifier of poly(L-lactic acid): shear and biaxial extensional flow behavior. J Rheol 48:599–609CrossRef
    18.Jimenez A, Peltzer M, Ruseckaite R (2014) Poly(lactic acid) science and technology: processing, properties, additives, and applications. Royal Society of Chemistry, Oxfordshire
    19.Salyer IO, Kenyon AS (1971) Structure and property relationships of ethylene-vinyl acetate copolymers. J Polym Sci Part A-1(9):3083–3103CrossRef
    20.Shankernarayanan MJ, Sun DC, Kojima M, Magill JH (1987) Rolletrusion: doubly-orientation processing and morphology—property relationships for commercial plastics. Int Polym Proc 1:66–76CrossRef
    21.Arsac A, Carrot C, Guillet J (1999) Rheological characterization of ethylene vinyl acetate copolymer. J Appl Polym Sci 74:2625–2630CrossRef
    22.Dlubek G, Lpke T, Stejny J, Alam MA, Arnold M (2000) Local free volume in ethylene-vinyl acetate copolymers: a positron lifetime study. Macromolecules 33:990–996CrossRef
    23.Peacock AJ (2000) Handbook of polyethylene. Marcel Dekker, New York
    24.Takahashi S, Okada H, Nobukawa S, Yamaguchi M (2012) Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene-vinyl acetate copolymer. Eur Polym J 48:974–980CrossRef
    25.Yamaguchi M, Arakawa K (2007) Control of structure and mechanical properties for binary blends of poly(3-hydroxybutyrate) and cellulose-derivative. J Appl Polym Sci 103:3447–3452CrossRef
    26.Huang T, Miura M, Nobukawa S, Yamaguchi M (2014) Crystallization behavior and dynamic mechanical properties of poly(L-lactic acid) with poly(ethylene glycol) terminated by benzoate. J Polym Environ 22:183–189CrossRef
    27.Zhu L (1999) In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, V/9-19, 4th edn. Wiley Interscience, New York
    28.Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York
    29.Wunderlich B (1980) Macromolecular physics, vol. 3, crystal melting. Academic, New York
    30.Rodriguez-Cabello JC, Alonso M, Merino JC, Pasor JM (1996) Scanning electron microscopy and differential scanning calorimetry study of the transition front in uniaxially stretched isotactic polypropylene. J Appl Polym Sci 60:1709–1717CrossRef
  • 作者单位:Ryuya Osato (1)
    Takumi Sako (1)
    Jiraporn Seemork (1) (2)
    Sunatda Arayachukiat (1) (2)
    Shogo Nobukawa (1)
    Masayuki Yamaguchi (1)

    1. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
    2. Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
Poly(ethylene-co-vinyl acetate) with 42 wt% of vinyl acetate shows autonomic self-healing at room temperature without macroscopic flow. Intermolecular diffusion of amorphous chains through the jointed boundary, which occurs because of the large amount of amorphous chains with low glass transition temperature, is responsible for the healing phenomenon. Furthermore, the healing efficiency is found to be enhanced when the separated pieces are recombined immediately after cutting. This result indicates that the cut surface has marked molecular mobility owing to the destruction of crystallites during the cutting process, which is supported by differential scanning calorimetry (DSC) measurements. The marked molecular mobility at the surface is, however, observed only for a short period after cutting, because further crystallization after cutting restricts the molecular motion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700