用户名: 密码: 验证码:
Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil
详细信息    查看全文
  • 作者:Francisco Ferreira de Campos ; Jacinta Enzweiler
  • 关键词:Gadolinium ; Surface water ; Anomaly ; Anthropogenic ; Rare earth elements ; River
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:188
  • 期:5
  • 全文大小:1,548 KB
  • 参考文献:Agência PCJ (2006). Report on the situation of water resources 2007: UGRHI 05—Watersheds of Piracicaba, Capivari and Jundiaí Rivers (in potuguese). São Paulo.
    Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 67–77. doi:10.​1016/​S0016-7037(99)00014-9 .CrossRef
    Bau, M., & Dulski, P. (1996). Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143, 245–255. doi:10.​1016/​0012-821X(96)00127-6 .CrossRef
    Birka, M., Wehe, C. A., Telgmann, L., Sperling, M., & Karst, U. (2013). Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. Journal of Chromatography. A, 1308, 125–131. doi:10.​1016/​j.​chroma.​2013.​08.​017 .CrossRef
    Bulia, I. L., & Enzweiler, J. (2015). Rare earth elements and uranium in groundwater under influence of distinct aquifers in Campinas (SP). Águas Subterrâneas, 29, 224–243. doi:10.​14295/​ras.​v29i2.​28409 .CrossRef
    Butterwick, L., de Oude, N., & Raymond, K. (1989). Safety assessment of boron in aquatic and terrestrial environments. Ecotoxicology and Environmental Safety, 17, 339–371. doi:10.​1016/​0147-6513(89)90055-9 .CrossRef
    Campos, F. F., & Enzweiler, J. (2013). Gadolinium anomalies in Atibaia River water (SP, Brazil)—Goldschmidt Abstracts 2013. Mineralogical Magazine, 77, 815. doi:10.​1180/​minmag.​2013.​077.​5.​3 .
    Campos, F.F., Enzweiler, J., (2014). Anthropogenic gadolinium anomalies and distribution of rare earth elements in Atibaia River and Anhumas Creek waters (São Paulo, Brazil). Master thesis. Campinas.
    CETESB (2004). Diagnosis and new ways of environmental management for the region of Paulinia (in Portuguese). São Paulo.
    Cotta, A. J. B., & Enzweiler, J. (2012). Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS. Geostandards and Geoanalytical Research, 36, 27–50. doi:10.​1111/​j.​1751-908X.​2011.​00115.​x .CrossRef
    Daniel, M. H. B., Montebelo, A. A., Bernardes, M. C., Ometto, J. P. H. B., de Camargo, P. B., Krusche, A. V., Ballester, M. V., Victoria, R. L., & Martinelli, L. A. (2002). Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River Basin. Water, Air, and Soil Pollution, 136, 189–206.CrossRef
    Deberdt, S., Viers, J., & Dupré, B. (2002). New insights about the rare earth elements (REE) mobility in river waters. Bulletin de la Societe Geologique de France, 173, 147–160. doi:10.​2113/​173.​2.​147 .CrossRef
    Elbaz-Poulichet, F., Seidel, J. L., & Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105. doi:10.​1016/​S0043-1354(01)00370-0 .CrossRef
    Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296, 214–219.CrossRef
    Elderfield, H., Upstill-Goddard, R., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991. doi:10.​1016/​0016-7037(90)90432-K .CrossRef
    Everett, D. H. (1972). Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry, 31, 577–638. doi:10.​1351/​pac197231040577 .CrossRef
    Francisco, C.E. da S., (2006). Permanent preservation areas in the watershed of Anhumas Creek: establishing priorities in the recovery by multi-criteria analysis (in Portuguese). Campinas: Instituto Agronômico de Campinas.
    Gaillardet, J., Viers, J., Dupré, B., (2014). Trace elements in river waters. In H. Holland, K. Turekian (Eds.), Treatise on geochemistry (second edition). pp. 195–235. doi:10.​1016/​B978-0-08-095975-7.​09879-X .
    Goldstein, S. J., & Jacobsen, S. B. (1988). Rare earth elements in river waters. Earth and Planetary Science Letters, 89, 35–47. doi:10.​1016/​0012-821X(88)90031-3 .CrossRef
    Gonzalez, V., Vignati, D. A. L., Leyval, C., & Giamberini, L. (2014). Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environment International, 71, 148–157. doi:10.​1016/​j.​envint.​2014.​06.​019 .CrossRef
    Gurumurthy, G. P., Balakrishna, K., Tripti, M., Audry, S., Riotte, J., Braun, J. J., & Udaya Shankar, H. N. (2014). Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, southwestern India. Environmental Science and Pollution Research, 21, 5098–5120. doi:10.​1007/​s11356-013-2462-7 .CrossRef
    Hennebrüder, K., Wennrich, R., Mattusch, J., Stärk, H.-J., & Engewald, W. (2004). Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta, 63, 309–316. doi:10.​1016/​j.​talanta.​2003.​10.​053 .CrossRef
    Idée, J.-M., Port, M., Robic, C., Medina, C., Sabatou, M., & Corot, C. (2009). Role of thermodynamic and kinetic parameters in gadolinium chelate stability. Journal of Magnetic Resonance Imaging, 30, 1249–1258. doi:10.​1002/​jmri.​21967 .CrossRef
    Katsoyiannis, A., & Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research, 14, 284–292. doi:10.​1065/​espr2006.​05.​302 .CrossRef
    Knappe, A., Möller, P., Dulski, P., & Pekdeger, A. (2005). Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chemie der Erde - Geochemistry, 65, 167–189. doi:10.​1016/​j.​chemer.​2004.​08.​004 .CrossRef
    Kraemer, D., Kopf, S., & Michael Bau, M. (2015). Oxidative mobilization of cerium and uranium and enhanced release of “immobile” high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B. Geochimica et Cosmochimica Acta, 165, 263–279. doi:10.​1016/​j.​gca.​2015.​05.​046 .CrossRef
    Kulaksız, S., & Bau, M. (2007). Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters, 260, 361–371. doi:10.​1016/​j.​epsl.​2007.​06.​016 .CrossRef
    Kulaksız, S., & Bau, M. (2011a). Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Applied Geochemistry, 26, 1877–1885. doi:10.​1016/​j.​apgeochem.​2011.​06.​011 .CrossRef
    Kulaksız, S., & Bau, M. (2011b). Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37, 973–979. doi:10.​1016/​j.​envint.​2011.​02.​018 .CrossRef
    Kulaksız, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50. doi:10.​1016/​j.​epsl.​2012.​11.​033 .CrossRef
    Künnemeyer, J., Terborg, L., Nowak, S., Brauckmann, C., Telgmann, L., Albert, A., et al. (2009). Quantification and excretion kinetics of a magnetic resonance imaging contrast agent by capillary electrophoresis-mass spectrometry. Electrophoresis, 30, 1766–1773. doi:10.​1002/​elps.​200800831 .CrossRef
    Lanaro, R., Capitani, E. M., Costa, J. L., Bucaretchi, F., Togni, L., Linden, R., Barbosa, F., Tessaro, E. P., Bataglion, G. A., Eberlin, M. N., Zappa, J. E. B., Almeida, L. C., Kemp, B., & Miller, J. R. (2014). Sudden deaths due to accidental intravenous injection of perfluorocarbon during MRI cranial examinations. Forensic Toxicology, 32, 323–330. doi:10.​1007/​s11419-014-0231-z .CrossRef
    Lawrence, M. G., Greig, A., Collerson, K. D., & Kamber, B. S. (2006). Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12, 39–72. doi:10.​1007/​s10498-005-4471-8 .CrossRef
    Lead, J. R., & Wilkinson, K. J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environment and Chemistry, 3, 159–171. doi:10.​1071/​EN06025 .CrossRef
    Leleyter, L., Probst, J.-L., Depetris, P., Haida, S., Mortatti, J., Rouault, R., & Samuel, J. (1999). REE distribution pattern in river sediments: partitioning into residual and labile fractions labile fractions. Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science, 329, 45–52. doi:10.​1016/​S1251-8050(99)80226-2 .
    Martinelli, L. A., Krusche, A. V., Vicgoria, R. L., Camargo, P. B., Bernardes, M., Ferraz, E. S., Moraes, J. M., & Ballester, M. V. (1999). Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water, Air, and Soil Pollution, 110, 67–79. doi:10.​1023/​A:​1005052213652 .CrossRef
    McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200.
    Merschel, G., & Bau, M. (2015). Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Science of the Total Environment, 533, 91–101. doi:10.​1016/​j.​scitotenv.​2015.​06.​042 .CrossRef
    Merschel, G., Bau, M., Baldewein, L., Dantas, E. L., Walde, D., & Bühn, B. (2015). Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: anthropogenic gadolinium and geogenic REEs in Lake Paranoá, Brasilia. Comptes Rendus Geoscience, 347, 284–293. doi:10.​1016/​j.​crte.​2015.​01.​004 .CrossRef
    Moffett, J. W. (1990). Microbially mediated cerium oxidation in sea water. Nature, 345, 421–423. doi:10.​1038/​345421a0 .CrossRef
    Möller, P., & Bau, M. (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters, 117, 671–676. doi:10.​1016/​0012-821X(93)90110-U .CrossRef
    Möller, P., Knappe, A., & Dulski, P. (2014). Seasonal variations of rare earths and yttrium distribution in the lowland Havel River, Germany, by agricultural fertilization and effluents of sewage treatment plants. Applied Geochemistry, 41, 62–72. doi:10.​1016/​j.​apgeochem.​2013.​11.​011 .CrossRef
    Morcos, S. K. (2008). Extracellular gadolinium contrast agents: differences in stability. European Journal of Radiology, 66, 175–179. doi:10.​1016/​j.​ejrad.​2008.​01.​025 .CrossRef
    Nelson, B. J., Wood, S. A., & Osiensky, J. L. (2003). Partitioning of REE between solution and particulate matter in natural waters: a filtration study. Journal of Solid State Chemistry, 171, 51–56. doi:10.​1016/​S0022-4596(02)00145-7 .CrossRef
    Pédrot, M., Dia, A., Davranche, M., & Gruau, G. (2015). Upper soil horizons control the rare earth element patterns in shallow groundwater. Geoderma, 239–240, 84–96. doi:10.​1016/​j.​geoderma.​2014.​09.​023 .CrossRef
    Perrota, M.M., Salvador, E.D., Lopes, R.C., D’Agostino, L.Z., Peruffo, N., Gomes, S.D. et al. (2005). Geological map of the State of São Paulo, scale 1:750.000 (in Portuguese). São Paulo.
    Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2008). New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology, 251, 120–127. doi:10.​1016/​j.​chemgeo.​2008.​03.​002 .CrossRef
    Raju, C. S. K., Lück, D., Scharf, H., Jakubowski, N., & Panne, U. (2010). A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment. Journal of Analytical Atomic Spectrometry, 25, 1573–1580. doi:10.​1039/​c003251d .CrossRef
    Ramsey, M.H. (1997). How to estimate analytical precision. In R. Gill (Ed.), Modern analytical geochemistry. Longman, p. 9.
    Rofsky, N. M., Sherry, D. A., & Lenkinski, R. E. (2008). Nephrogenic systemic fibrosis: a chemical perspective. Radiology, 247, 608–612. doi:10.​1148/​radiol.​2473071975 .CrossRef
    SANASA (2014). General data (wastewater treatment plants), Society for the Supply of Water and Sanitation (in Portuguese). Available at: http://​www.​sanasa.​com.​br/​conteudo/​conteudo2.​aspx?​f=​I&​par_​nrod=​572&​flag=​TS . Accessed Nov 2015.
    Shabani, M. B., Akagi, T., & Masuda, A. (1992). Preconcentration of trace rare-earth elements in seawater by complexation with bis(2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Analytical Chemistry, 64, 737–743. doi:10.​1021/​ac00031a008 .CrossRef
    Sholkovitz, E. R. (1992). Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. Earth and Planetary Science Letters, 114, 77–84. doi:10.​1016/​0012-821X(92)90152-L .CrossRef
    Smedley, P. L. (1991). The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochimica et Cosmochimica Acta, 55, 2767–2779.CrossRef
    Steinmann, M., & Stille, P. (2008). Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic-granitic catchment basin (Massif Central, France). Chemical Geology, 254, 1–18. doi:10.​1016/​j.​chemgeo.​2008.​04.​004 .CrossRef
    Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry (2nd ed.). New York: Wiley.
    Tan, X., Ren, X., Chen, C., & Wang, X. (2014). Analytical approaches to the speciation of lanthanides at solid-water interfaces. Trends in Analytical Chemistry, 61, 107–132. doi:10.​1016/​j.​trac.​2014.​06.​010 .CrossRef
    Tepe, N., & Bau, M. (2014). Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Science of the Total Environment, 488–489, 243–251. doi:10.​1016/​j.​scitotenv.​2014.​04.​083 .CrossRef
    Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., & Eikenberg, J. (1999). Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chemical Geology, 160, 139–158. doi:10.​1016/​S0009-2541(99)00065-0 .CrossRef
    Wang, X., Jin, T., Comblin, V., Lopez-Mut, A., Merciny, E., & Desreux, J. F. (1992). A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent. Inorganic Chemistry, 31, 1095–1099. doi:10.​1021/​ic00032a034 .CrossRef
    Yeghicheyan, D., Carignan, J., Valladon, M., Coz, M. B., Cornec, F. L., Castrec-Rouelle, M., et al. (2001). A compilation of silicon and thirty one trace elements measured in the natural river water reference material SLRS-4 (NRC-CNRC). Geostandards and Geoanalytical Research, 25, 465–474. doi:10.​1111/​j.​1751-908X.​2001.​tb00617.​x .CrossRef
    Yeghicheyan, D., Bossy, C., Bouhnik LeCoz, M., Douchet, C., Granier, G., Heimburger, A., Lacan, F., Lanzanova, A., Rousseau, T. C. C., Seidel, J. L., Tharaud, M., Candaudap, F., Chmeleff, J., Cloquet, C., Delpoux, S., & Labatut, M. (2013). A compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC). Geostandards and Geographical Research, 37, 449–467. doi:10.​1111/​j.​1751-908X.​2013.​00232.​x .CrossRef
    Zhang, C., Wang, L., Zhang, S., & Li, X. (1998). Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry, 13, 451–462. doi:10.​1016/​S0883-2927(97)00079-6 .CrossRef
  • 作者单位:Francisco Ferreira de Campos (1) (2)
    Jacinta Enzweiler (1)

    1. Institute of Geosciences, University of Campinas, UNICAMP, C.P. 6152, CEP 13083-970, Campinas, SP, Brazil
    2. Geological Survey of Brazil, Rua Costa 55, CEP 01304-010, São Paulo, SP, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700