用户名: 密码: 验证码:
Influences of hydrogen dilution on the growth of Si-based core–shell nanowires by HWCVD, and their structure and optical properties
详细信息    查看全文
  • 作者:Abtisam Hasan Hamood Al-Masoodi ; Najwa Binti Hamzan…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:122
  • 期:3
  • 全文大小:4,223 KB
  • 参考文献:1.B. Joonho, H. Kim, Z. Xiao-Mei, H. Dang Cuong, Y. Zhang, J. Choi Young, Nanotechnology 21, 095502 (2010)ADS CrossRef
    2.R. Riccardo, Rev. Mod. Phys. 82, 427 (2010)ADS CrossRef
    3.M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nat. Mater. 9, 239 (2010)ADS CrossRef
    4.X. Wang, K.L. Pey, C.H. Yip, E.A. Fitzgerald, D.A. Antoniadis, J. Appl. Phys. 108, 124303 (2010)ADS CrossRef
    5.L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano Lett. 9, 491 (2008)ADS CrossRef
    6.S. Chen, C. Shehata, R. Fradin, C. LaPierre, G. Couteau, Weihs. Nano Lett. 7, 2584 (2007)ADS CrossRef
    7.Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature 430, 61 (2004)ADS CrossRef
    8.G. Qian, S. Rahman, B. Goh, Nanoscale Res. Lett. 10, 267 (2015)ADS CrossRef
    9.C.J. Kim, K. Kang, Y.S. Woo, K.G. Ryu, H. Moon, J.M. Kim, D.S. Zang, M.H. Jo, Adv. Mater. 19, 3637 (2007)CrossRef
    10.C.-Y. Lee, M.-P. Lu, K.-F. Liao, W.-W. Wu, L.-J. Chen, Appl. Phys. Lett. 93, 113109 (2008)ADS CrossRef
    11.S. Chen, P. Ying, L. Wang, F. Gao, G. Wei, J. Zheng, Z. Xie, W. Yang, RSC Adv. 4, 8376 (2014)CrossRef
    12.S. Chong, B. Goh, Z. Aspanut, M. Muhamad, B. Varghese, C. Sow, C. Dee, S. Rahman, Thin Solid Films 520, 74 (2011)ADS CrossRef
    13.S.K. Chong, B.T. Goh, C.F. Dee, S.A. Rahman, Mater. Chem. Phys. 135, 635 (2012)CrossRef
    14.S.K. Chong, B.T. Goh, Z. Aspanut, M.R. Muhamad, C.F. Dee, S.A. Rahman, Mater. Lett. 65, 2452 (2011)CrossRef
    15.K. Chakraborty, D. Das, Sol. Energy Mater. Sol. Cells 90, 849 (2006)CrossRef
    16.H.-Y. Mao, D.-S. Wuu, B.-R. Wu, S.-Y. Lo, H.-Y. Hsieh, R.-H. Horng, Thin Solid Films 520, 2110 (2012)ADS CrossRef
    17.S. Klein, R. Carius, F. Finger, L. Houben, Thin Solid Films 501, 169 (2006)ADS CrossRef
    18.Y. Komura, A. Tabata, T. Narita, A. Kondo, T. Mizutani, J. Non-Cryst. Solids 352, 1367 (2006)ADS CrossRef
    19.S.K. Chong, B.T. Goh, C.F. Dee, S.A. Rahman, Thin Solid Films 529, 153 (2013)ADS CrossRef
    20.S.K. Chong, B.T. Goh, Z. Aspanut, M.R. Muhamad, C.F. Dee, S.A. Rahman, Thin Solid Films 519, 4933 (2011)ADS CrossRef
    21.B.T. Goh, S.A. Rahman, Mater. Chem. Phys. 147, 974 (2014)CrossRef
    22.K. Tankala, T. DebRoy, J. Appl. Phys. 72, 712 (1992)ADS CrossRef
    23.A. Tabata, Y. Komura, Surf. Coat. Technol. 201, 8986 (2007)CrossRef
    24.J.-S. Hong, C.-S. Kim, S.-W. Yoo, S.-H. Park, N.-M. Hwang, H.-M. Choi, D.-B. Kim, T.-S. Kim, Aerosol Sci. Technol. 47, 46 (2012)CrossRef
    25.W. Zhou, X. Liu, Y. Zhang, Appl. Phys. Lett. 89, 223124 (2006)ADS CrossRef
    26.B. Tong Goh, S. Abdul Rahman, J. Cryst. Growth 407, 25 (2014)ADS CrossRef
    27.S.K. Chong, B.T. Goh, Z. Aspanut, R.M. Muhamad, C.F. Dee, S.A. Rahman, Appl. Surf. Sci. 257, 3320 (2011)ADS CrossRef
    28.Y. Linwei, A. Pierre-Jean, P. Gennaro, M. Isabelle, C. Pere Roca i, Nanotechnology 19, 485605 (2008)CrossRef
    29.S.K. Deb, M. Wilding, M. Somayazulu, P.F. McMillan, Nature 414, 528 (2001)ADS CrossRef
    30.W. Monika, W. Yuejian, T.W. Zerda, J. Phys.: Condens. Matter 17, 2387 (2005)
    31.S.-L. Zhang, B.-F. Zhu, F. Huang, Y. Yan, E.-Y. Shang, S. Fan, W. Han, Solid State Commun. 111, 647 (1999)ADS CrossRef
    32.N.F.F.B. Nazarudin, S.N.A.B. Azizan, S.A. Rahman, B.T. Goh, Thin Solid Films 570, Part B, 243 (2014)ADS CrossRef
    33.K.S. Lee, Y.H. Mo, K.S. Nahm, H.W. Shim, E.K. Suh, J.R. Kim, J.J. Kim, Chem. Phys. Lett. 384, 215 (2004)ADS CrossRef
    34.J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006)ADS CrossRef
    35.G.B. Tong, Z. Aspanut, M.R. Muhamad, S. Abdul Rahman, Vacuum 86, 1195 (2012)ADS CrossRef
    36.B.P. Swain, Surf. Coat. Technol. 201, 1589 (2006)CrossRef
    37.M. Mori, A. Tabata, T. Mizutani, Thin Solid Films 501, 177 (2006)ADS CrossRef
    38.F. Shariatmadar Tehrani, B. Goh, M. Muhamad, S. Rahman, J. Mater. Sci.: Mater. Electron. 24, 1361 (2013)
    39.B. Goh, C. Wah, Z. Aspanut, S. Rahman, J. Mater. Sci.: Mater. Electron. 25, 286 (2014)
    40.G.W. Meng, L.D. Zhang, Y. Qin, C.M. Mo, F. Phillipp, Nanostruct. Mater. 12, 1003 (1999)CrossRef
    41.P.-J. Alet, L. Yu, G. Patriarche, S. Palacin, P. Roca i Cabarrocas, J. Mater. Chem. 18, 5187 (2008)CrossRef
    42.T. Wu, H. Shen, B. Cheng, Y. Pan, B. Liu, J. Shen, Appl. Surf. Sci. 258, 999 (2011)ADS CrossRef
    43.H. Ting-Jen, C. Hsin-Yuan, T. Tsung-Ying, W.Y. Weng, Y. Yu-Ming, D. Bau-Tong, S. Jia-Min, Electron Device Lett. IEEE 31, 1275 (2010)
    44.L. Hu, G. Chen, Nano Lett. 7, 3249 (2007)ADS CrossRef
  • 作者单位:Abtisam Hasan Hamood Al-Masoodi (1)
    Najwa Binti Hamzan (1)
    Ahmed Hasan Hamood Al-Masoodi (1)
    Saadah Abdul Rahman (1)
    Boon Tong Goh (1)

    1. Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
Si-based core–shell nanowires were grown on Ni-coated crystal silicon substrates using a hot-wire chemical vapor deposition technique. The NiSi nanoparticles acted as catalysts that facilitated the growth of the core–shell nanowires without any hydrogen dilution as well as that ranging from 20 to 99 %. These nanowires were structured by single-crystalline NiSi cores and amorphous shells with consisting of nanocrystallites embedded within an amorphous matrix. Raman results reveal crystallization of amorphous Si to crystalline Si up to the crystalline volume fraction of 92.3 % for the nanowires grown with hydrogen dilution. An increase in hydrogen dilution enhanced the decomposition rate and the gas-phase reactions for SiC shell formation, while further increases up to 99 % suppressed the growth of the nanowires. Moreover, a phased transition from Si to SiC occurred with increases in hydrogen dilution above 20 %. The nanowires demonstrated superior optical absorption in the visible region, revealing their significant light-trapping ability. This paper discusses the influences of hydrogen dilution on the structure and optical properties of these core–shell nanowires.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700