用户名: 密码: 验证码:
Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G
详细信息    查看全文
  • 作者:Jie Xiong ; Wenwen Wang ; Yali Zhou ; Weijun Kong ; Zhenxing Wang
  • 关键词:Magnetic beads ; Staphylococcus protein A ; Horseradish peroxidase ; Luminol ; Fluorescence imaging ; Pseudomonas ; Micrococcus ; Bacillus subtilis ; Escherichia coli ; Salmonella typhimurium
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1507-1512
  • 全文大小:357 KB
  • 参考文献:1.Paule SM, Mehta M, Hacek DM, Gonzalzles TM, Robicsek A, Peterson LR (2009) Chromogenic media vs real-time PCR for nasal surveillance of Methicillin-resistant Staphylococcus aureus impact on detection of MRSA-positive persons. Am J Clin Pathol 131:532–539CrossRef
    2.Roda A, Mirasili M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28CrossRef
    3.Safdar N, Narans L, Gordon B, Maki DG (2003) Comparison of culture screening methods for detection of nasal carriage of Methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. J Clin Microbiol 41:3163–3166CrossRef
    4.Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS, Tseng CP (2006) Rapid detection and identification of clinically important bacteria high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004CrossRef
    5.Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178:245–260CrossRef
    6.Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, Omizu Y, Kishi Y, Yagihashi A, Kurokawa I (1994) Detection of mecA, femA, and femB genes in clinical strains of Staphylococci using polymerase chain-reaction. Epidemiol Infect 113:259–266CrossRef
    7.Wang H, Chen HW, Hupert ML, Chen PC, Pittman PT, Goettert J, Murphy MC, Williams D, Barany F (2012) Fully integrated thermoplastic genosensor for the highly sensitive detection and identification of mulit-drug-resistant Tuberculosis. Angew Chem Int Ed 51:4349–4353CrossRef
    8.Kersting S, Rausch V, Bier FF, Nickisch-Rosenegk MV (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta 181:1715–1723CrossRef
    9.Wu X, Su YC (2014) Growth of Staphylococcus aureus and enterotoxin production in precooked tuna meat. Food Control 42:63–70CrossRef
    10.Nawattanapaiboon K, Kiatpathomchai W, Santanirand P, Vongsakulyanon A, Amarit R, Somboonkaew A, Sutapun B, Srikhirin T (2015) SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification. Biosens Bioelectron 74:335–340CrossRef
    11.Zhang TT, Ding JY, Rao XC, Yu JB, Chu ML, Ren W, Wang L, Xue WC (2015) Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). J Microbiol Meth 117:127–127CrossRef
    12.Jia F, Duan N, Wu SJ, Ma XY, Xia Y, Wang ZP, Wei XL (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974CrossRef
    13.Yuan JL, Yu Y, Li C, Ma XY, Xia Y, Chen J, Wang ZP (2014) Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchim Acta 181:321–327CrossRef
    14.Duan N, Wu SJ, Dai SL, Miao TT, Chen J, Wang ZP (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923CrossRef
    15.Brandão D, Liébana S, Pividori MI (2015) Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnol 32:511–520CrossRef
    16.Iranifam M (2013) Analytical applications of chemiluminescence–detection systems assisted by magnetic microparicles and nanoparticles. Trends Anal Chem 51:51–70CrossRef
    17.Bi S, Yan YM, Yang XY, Zhang SS (2009) Gold nanolabels for new enhanced chemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads. Chem Eur J 15:4704–4709CrossRef
    18.Zhao Y, Ye MQ, Chao QG, Jia NQ, Ge Y, Shen HB (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagetic separation in food samples. J Agric Food Chem 57:517–524CrossRef
    19.Liébana S, Lermo A, Campoy S, Cortés MP, Alegret S, Pividori MI (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25:510–513CrossRef
    20.Fischer JR, Parveen N, Magoun L, Leong JM (2003) Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 100:7307–7312CrossRef
    21.Orndorff PE, Dworkin M (1982) Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus. J Bacteriol 149:29–39
    22.Ren H, Wang ZW, Du B, Yu QW, Wang L, Chen HQ, Qian M, Zhang P, Jiang LH (2011) Principles and techniques of immunology. In: immunolabelling technique, 1st edn. Higher Education Press, Beijing, pp 228–232
    23.Graile M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (1999) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404CrossRef
    24.Ryan S, Kell AJ, Faassen HV, Tay LL, Simard B, MacKenzie R, Gilbert M, Tanha J (2009) Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Bioconjug Chem 20:1966–1974CrossRef
    25.Touhami A, Jericho MH, Beveridge TJ (2007) Molecular recognition forces between immunoglobulin G and a surface protein adhesion on living Staphylococcus aureus. Langmuir 23:2755–2760CrossRef
    26.Gouda H, Shiraishi M, Takahashi H, Kato K, Torigoe H, Arata Y, Shimada I (1998) NMR study of the interaction between the B domain of Staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37:129–136CrossRef
    27.Yu JP, Zhang Y, Zhang Y, Li H, Yang H, Wei HP (2016) Sensitive and rapid detection of Staphylococcus aureus in mink via cell binding domain of lysin. Biosens Bioelectron 77:366–371CrossRef
    28.Hu YH, Wang CC, Bai B, Li MT, Wang RH, Li YB (2014) Detection of Staphylococcus aureus using quantum dots as fluorescence labels. Int J Agr Biol Eng 7:77–83
    29.Zhang H, Ma XY, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRef
    30.Shangguang JF, Li YH, He DG, He XX, Wang KM, Zou Z, Shi H (2015) A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst 140:4489–4497CrossRef
  • 作者单位:Jie Xiong (1)
    Wenwen Wang (1)
    Yali Zhou (1)
    Weijun Kong (1)
    Zhenxing Wang (1)
    Zhifeng Fu (1)

    1. Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Staphylococcus protein A (SPA) is a surface protein only expressed naturally in the cell walls of Staphylococcus aureus (S. aureus) and binds specifically to the Fc region of immunoglobulin G (IgG). This fact can be utilized for the detection of S. aureus. Specifically, SPA-modified magnetic beads, compete with S. aureus pathogens for binding to rabbit IgG that previously was labeled with horseradish peroxidase (HRP). The beads were then magnetically separated, and chemiluminescence (CL) was generated by adding the reagents luminol and H2O2. Under optimal conditions, the intensity of CL decreases with increasing concentration of S. aureus over a very wide linear range (10 to 1.0 × 109 cfu·mL−1), with a limit of detection of 6.0 cfu·mL−1 at an S/N ratio of 3. The assay (including binding reaction, magnetic separation, washing of beads and detection) is completed within 50 min which is faster than many reported methods. It can well distinguish S. aureus from other Gram-positive and Gram-negative bacteria. The magnetic beads have the beneficial effect of eliminating undesired matrix effects and of concentrating the sample. The method was applied to the analysis of urine, apple juice and glucose injection samples spiked with S. aureus, and recoveries ranged from 85 to 107 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700