用户名: 密码: 验证码:
A single glass conical nanopore channel modified with 6-carboxymethyl-chitosan to study the binding of bovine serum albumin due to hydrophobic and hydrophilic interactions
详细信息    查看全文
  • 作者:Sheng-Lin Cai ; Li-Xiang Zhang ; Kai Zhang ; Yu-Bin Zheng ; Shuang Zhao…
  • 关键词:Single glass nanopores ; Conical nanopores ; 6 ; Carboxymethyl ; chitosan ; Hydrophobic interaction ; Hydrophilic interaction ; Bovine serum albumin
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:981-986
  • 全文大小:733 KB
  • 参考文献:1.Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. Trac-trend Anal Chem 27:627–639CrossRef
    2.de la Escosura-Muniz A, Merkoci A (2012) Nanochannels preparation and application in biosensing. ACS Nano 6:7556–7583CrossRef
    3.Sinha PM, Valco G, Sharma S, Liu XW, Ferrari M (2004) Nanoengineered device for drug delivery application. Nanotechnology 15:S585–S589CrossRef
    4.Guo ZJ, Wang JH, Wang EK (2012) Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel. Talanta 89:253–257CrossRef
    5.Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401CrossRef
    6.Ying YL, Li DW, Liu Y, Dey SK, Kraatz HB, Long YT (2012) Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an alpha-hemolysin nanopore. Chem Commun 48:8784–8786CrossRef
    7.Wang HY, Ying YL, Li Y, Kraatz HB, Long YT (2011) Nanopore analysis of beta-amyloid peptide aggregation transition induced by small molecules. Anal Chem 83:1746–1752CrossRef
    8.Ali M, Bayer V, Schiedt B, Neumann R, Ensinger W (2008) Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules. Nanotechnology 19(48):485711CrossRef
    9.Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746CrossRef
    10.Ali M, Schiedt B, Neumann R, Ensinger W (2010) Biosensing with functionalized single asymmetric polymer nanochannels. Macromol Biosci 10:28–32CrossRef
    11.Ali M, Nasir S, Nguyen QH, Sahoo JK, Tahir MN, Tremel W, Ensinger W (2011) Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. J Am Chem Soc 133:17307–17314CrossRef
    12.Tahir MN, Ali M, Andre R, Muller WEG, Schroder HC, Tremel W, Ensinger W (2013) Silicatein conjugation inside nanoconfined geometries through immobilized NTA-Ni(II) chelates. Chem Commun 49:2210–2212CrossRef
    13.Zhao S, Zheng Y-B, Cai S-L, Weng Y-H, Cao S-H, Yang J-L, Li Y-Q (2013) Sugar-stimulated robust nanodevice: 4-Carboxyphenylboronic acid modified single glass conical nanopores. Electrochem Commun 36:71–74CrossRef
    14.Wang J, Martin CR (2008) A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 3:13–20CrossRef
    15.Zhang LX, Cao XH, Zheng YB, Li YQ (2010) Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification. Electrochem Commun 12:1249–1252CrossRef
    16.Zhang LX, Cai SL, Zheng YB, Cao XH, Li YQ (2011) Smart homopolymer modification to single glass conical nanopore channels: dual-stimuli-actuated highly efficient ion gating. Adv Funct Mater 21:2103–2107CrossRef
    17.Ali M, Neumann R, Ensinger W (2010) Sequence-specific recognition of DNA oligomer using Peptide Nucleic Acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. ACS Nano 4:7267–7274CrossRef
    18.Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986CrossRef
    19.Fu YQ, Tokuhisa H, Baker LA (2009) Nanopore DNA sensors based on dendrimer-modified nanopipettes. Chem Commun 32:4877–4879CrossRef
    20.Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001CrossRef
    21.Gao LJ, Li P, Zhang YQ, Xiao K, Ma J, Xie GH, Hou GL, Zhang Z, Wen LP, Jiang L (2015) A Bio-inspired, sensitive, and selective ionic gate driven by silver (I) ions. Small 11:543–547CrossRef
    22.Shang Y, Zhang Y, Li P, Lai J, Kong X-Y, Liu W, Xiao K, Xie G, Tian Y, Wen L, Jiang L (2015) DNAzyme tunable lead(II) gating based on ion-track etched conical nanochannels. Chem Commun 51:5979–5981CrossRef
    23.Ali M, Tahir MN, Siwy Z, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680CrossRef
    24.Nguyen QH, Ali M, Bayer V, Neumann R, Ensinger W (2010) Charge-selective transport of organic and protein analytes through synthetic nanochannels. Nanotechnology 21(36):365701CrossRef
    25.Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351–16357CrossRef
    26.Sexton LT, Mukaibo H, Katira P, Hess H, Sherrill SA, Horne LP, Martin CR (2010) An adsorption-based model for pulse duration in resistive-pulse protein sensing. J Am Chem Soc 132:6755–6763CrossRef
    27.Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129:13144–13152CrossRef
    28.Actis P, Rogers A, Nivala J, Vilozny B, Seger RA, Jejelowo O, Pourmand N (2011) Reversible thrombin detection by aptamer functionalized STING sensors. Biosens Bioelectron 26:4503–4507CrossRef
    29.Shang J, Shao ZZ, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213CrossRef
    30.Yang LR, Guo C, Chen S, Wang F, Wang J, An ZT, Liu CZ, Liu HZ (2009) pH-sensitive magnetic ion exchanger for protein separation. Ind Eng Chem Res 48:944–950CrossRef
    31.Zhang B, Galusha J, Shiozawa PG, Wang GL, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal Chem 79:4778–4787CrossRef
    32.Cao X-L, Li H-W, Yue Y, Wu Y (2013) pH-Induced conformational changes of BSA in fluorescent AuNCs at BSA and its effects on NCs emission. Vib Spectrosc 65:186–192CrossRef
  • 作者单位:Sheng-Lin Cai (1)
    Li-Xiang Zhang (1)
    Kai Zhang (1)
    Yu-Bin Zheng (1)
    Shuang Zhao (1)
    Yao-Qun Li (1)

    1. Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
A single glass conical nanopore functionalized with 6-carboxymethyl-chitosan (CMC) was applied to study the binding of bovine serum albumin (BSA) because of both hydrophobic and hydrophilic interactions. The interactions between the CMC-modified nanopore and BSA within the confined space were studied via the ionic current passing the nanopore by measuring the current–voltage (I–V) curves in 10 mM KCl solution. The hydrophilicity of CMC was varied by adjusting the pH values. Significant changes in the ionic current were observed following attachment of BSA. The relative contributions of hydrophobic and hydrophilic interactions depend on whether solutions are acidic or basic. A linear relationship exists between the concentration of BSA (up to 500 nM) and the ionic current at pH 12. This suggests a potential application of the method for sensing proteins via sweep voltammetry on a nanoscale. The nanodevice described here can be made reversible by ultrasonication to remove the attached BSA molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700