用户名: 密码: 验证码:
Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion
详细信息    查看全文
  • 作者:Yun Liang ; Yi He
  • 关键词:Arsenazo III ; Plasmonic assay ; Gold nanoparticles ; Uranyl ion ; Detection
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:183
  • 期:1
  • 页码:407-413
  • 全文大小:677 KB
  • 参考文献:1.Bhandari D, Wells S, Retterer S, Sepaniak M (2009) Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced raman spectroscopy. Anal Chem 81:8061–8067CrossRef
    2.Zhou B, Shi L, Wang Y, Yang H, Xue J, Liu L, et al. (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110:419–424CrossRef
    3.Peled Y, Krent E, Tal N, Tobias H, Mandler D (2014) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87:768–776CrossRef
    4.Chen X, He L, Wang Y, Liu B, Tang Y (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60CrossRef
    5.Leonhard P, Pepelnik R, Prange A, Yamada N, Yamada T (2002) Analysis of diluted sea-water at the ng L− 1 level using an ICP-MS with an octopole reaction cell. J Anal Atom Spectrom 17:189–196CrossRef
    6.Murty P, Barnes R (1986) Determination of trace rare earth elements in uranium by inductively coupled plasma atomic emission spectrometry. J Anal Atom Spectrom 1:145–148CrossRef
    7.Toth L, Begun G (1981) Raman spectra of uranyl ion and its hydrolysis products in aqueous nitric acid. J Phys Chem 85:547–549CrossRef
    8.Lee J, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric assays for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226CrossRef
    9.Tang Q, Yuan Y, Xiao X, Guo P, Hu J, Ma D, Gao Y (2013) DNAzyme based electrochemical sensors for trace uranium. Microchim Acta 180(11–12):1059–1064CrossRef
    10.Zhou B, Shi L, Wang Y, Yang H, Xue J, Liu L, Wang Y, Yin J, Wang J (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110:419–424CrossRef
    11.Jauberty L, Drogat N, Decossas J, Delpech V, Gloaguen V, Sol V (2013) Optimization of the arsenazo-III method for the determination of uranium in water and plant samples. Talanta 115:751–754CrossRef
    12.Khan M, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRef
    13.Kuroda R, Kurosaki M, Hayashibe Y, Ishimaru S (1990) Simultaneous determination of uranium and thorium with arsenazo III by second-derivative spectrophotometry. Talanta 37:619–624CrossRef
    14.Strelow F, Van der Walt T, Kokot M, Bhaga B (1976) Rationalized determination of uranium in rocks for geochemical prospecting using separation by ion exchange chromatography and spectrophotometry with arsenazo (III). J S Afr Chem I 29:97–104
    15.Saha K, Agasti S, Kim C, Li X, Rotello V (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef
    16.Zeng S, Yong K, Roy I, Dinh X, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRef
    17.Cao X, Zhang H, Ma R, Yang Q, Zhang Z, Liu Y (2015) Visual colorimetric detection of UO2 2+ using o-phosphorylethanolamine-functionalized gold nanoparticles. Assay Actuat B-Chem 218:67–72CrossRef
    18.Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A 212:219–226CrossRef
    19.Wang H, Li Y, Liu M, Gong M, Deng Z (2015) Overcoming the coupling dilemma in DNA-programmable nanoparticle assemblies by “Ag+ soldering”. Small 11:2247–2251CrossRef
    20.Zhang Y, Price J, Karatchevtseva I, Lu K, Yoon B, Kadi F, et al. (2015) Comparison of uranium (VI) and thorium (IV) coordination polymers with p-toluenesulfonic acid. Polyhedron 91:98–103CrossRef
    21.Paull B, Haddad P (1999) Chelation ion chromatography of trace metal ions using metallochromic ligands. TrAC Trends Anal Chem 18:107–114CrossRef
    22.Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interfaces 5:8724–8732CrossRef
  • 作者单位:Yun Liang (1)
    Yi He (1)

    1. School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Gold nanoparticles (AuNPs) were functionalized with the indicator dye Arsenazo III via reductive synthesis of AuNPs in the presence of arsenazo III. The indicator dye is shown to be immobilized on the AuNPs via interaction between gold and sulfo groups. The functionalized AuNPs undergo aggregation in the presence of uranyl ion due to the coordination interaction between arsenazo III and uranyl ion. This is accompanied by a longwave shift of the surface plasmon resonance absorption band (from 535 nm to 548 nm) and an up to 46.8 % increase in absorbance. This finding forms the basis for a photometric assay for uranyl ion. It shows good selectivity and has a 0.5 μM detection limit. Applied to the determination of uranyl ion in spiked environmental water samples, the recoveries were between 97 and 106 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700