用户名: 密码: 验证码:
Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production
详细信息    查看全文
  • 作者:Junli Zhang ; Zhen Kang ; Wenwen Ding ; Jian Chen…
  • 关键词:5 ; Aminolevulinic acid ; Escherichia coli ; Heme ; Iron ; RyhB
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:178
  • 期:6
  • 页码:1252-1262
  • 全文大小:446 KB
  • 参考文献:1.Kang, Z., Zhang, J., Zhou, J., Qi, Q., Du, G., & Chen, J. (2012). Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 30, 1533–1542.CrossRef
    2.Beale, S. I. (1990). Biosynthesis of the tetrapyrrole pigment precursor, delta-aminolevulinic acid, from glutamate. Plant Physiology, 93, 1273–1279.CrossRef
    3.Hunter, G., & Ferreira, G. (2009). 5-Aminolevulinate synthase: catalysis of the first step of heme biosynthesis. Cell and Molecular Biology (Noisy-le-grand), 55, 102–110.
    4.Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23–29.CrossRef
    5.Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13, 492–498.CrossRef
    6.Luer, C., Schauer, S., Mobius, K., Schulze, J., Schubert, W. D., Heinz, D. W., Jahn, D., & Moser, J. (2005). Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. The Journal of Biological Chemistry, 280, 18568–18572.CrossRef
    7.Bhowmick, R., & Girotti, A. W. (2010). Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biology and Medicine, 48, 1296–1301.CrossRef
    8.Mikolajewska, P., Donnelly, R. F., Garland, M. J., Morrow, D. I., Singh, T. R., Iani, V., Moan, J., & Juzeniene, A. (2010). Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharmaceutical Research, 27, 2213–2220.CrossRef
    9.Sasikala, C., Ramana, C. V., & Rao, P. R. (1994). 5-Aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnology Progress, 10, 451–459.CrossRef
    10.Takeya, H., Tanaka, T., Hotta, T., & Sasaki, K. (1997). Production methods and applications of 5-aminolevulinic acid. Porphyrins, 6, 127–135.
    11.Lin, J., Fu, W., & Cen, P. (2009). Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresource Technology, 100, 2293–2297.CrossRef
    12.Neidle, E. L., & Kaplan, S. (1993). Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. Journal of Bacteriology, 175, 2292–2303.
    13.Qin, G., Lin, J., Liu, X., & Cen, P. (2006). Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 102, 316–322.CrossRef
    14.van der Werf, M. J., & Zeikus, J. G. (1996). 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Applied and Environmental Microbiology, 62, 3560–3566.
    15.Xie, L., Hall, D., Eiteman, M. A., & Altman, E. (2003). Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Applied Microbiology and Biotechnology, 63, 267–273.CrossRef
    16.Chung, S. Y., Seo, K. H., & Rhee, J. I. (2005). Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochemistry, 40, 385–394.CrossRef
    17.Fu, W., Lin, J., & Cen, P. (2008). Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technology, 99, 4864–4870.CrossRef
    18.Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27, 215–237.CrossRef
    19.Kang, Z., Geng, Y., Xia, Y. z., Kang, J., & Qi, Q. (2009). Engineering Escherichia coli for an efficient aerobic fermentation platform. Journal of Biotechnology, 144, 58–63.CrossRef
    20.Yoon, S., Han, M.-J., Jeong, H., Lee, C., Xia, X.-X., Lee, D.-H., Shim, J., Lee, S., Oh, T., & Kim, J. (2012). Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biology, 13, R37.CrossRef
    21.Wang, X., Wang, Q., Qi, Q. (2015). Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21 (DE3) and MG1655. FEMS Microbiology Letters, 362, fnv071.
    22.Han, M. J., Lee, S. Y., & Hong, S. H. (2012). Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. Journal of Microbiology and Biotechnology, 22, 470–478.CrossRef
    23.Kim, B., Park, H., Na, D., & Lee, S. Y. (2014). Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnology Journal, 9, 621–629.CrossRef
    24.Qian, Z. G., Xia, X. X., Choi, J. H., & Lee, S. Y. (2008). Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnology and Bioengineering, 101, 587–601.CrossRef
    25.Li, N., Zhang, B., Chen, T., Wang, Z., Tang, Y.-J., & Zhao, X. (2013). Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. Journal of Industrial Microbiology & Biotechnology, 40, 1461–1475.CrossRef
    26.Xia, X.-X., Qian, Z.-G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107, 14059–14063.CrossRef
    27.Tolia, N. H., & Joshua-Tor, L. (2006). Strategies for protein coexpression in Escherichia coli. Nature Methods, 3, 55–64.CrossRef
    28.Zhang, J., Kang, Z., Chen, J., & Du, G. (2015). Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 5, 8584.CrossRef
    29.Mauzerall, D., & Granick, S. (1956). The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. The Journal of Biological Chemistry, 219, 435–446.
    30.Sassa, S. (1982). Delta-aminolevulinic acid dehydratase assay. Enzyme, 28, 133–145.
    31.Frankenberg, N., Moser, J., & Jahn, D. (2003). Bacterial heme biosynthesis and its biotechnological application. Applied Microbiology and Biotechnology, 63, 115–127.CrossRef
    32.Franken, A. W., Lokman, B. C., Ram, A. J., Punt, P., Hondel, C. M. J. J., & Weert, S. (2011). Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Applied Microbiology and Biotechnology, 91, 447–460.CrossRef
    33.Schobert, M., & Jahn, D. (2002). Regulation of heme biosynthesis in non-phototrophic bacteria. Journal of Molecular Microbiology and Biotechnology, 4, 287–294.
    34.Möbius, K., Arias-Cartin, R., Breckau, D., Hännig, A.-L., Riedmann, K., Biedendieck, R., Schröder, S., Becher, D., Magalon, A., Moser, J., Jahn, M., & Jahn, D. (2010). Heme biosynthesis is coupled to electron transport chains for energy generation. Proceedings of the National Academy of Sciences of the United States of America, 107, 10436–10441.CrossRef
    35.Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373, 1–6.CrossRef
    36.Massé, E., Salvail, H., Desnoyers, G., & Arguin, M. (2007). Small RNAs controlling iron metabolism. Current Opinion in Microbiology, 10, 140–145.CrossRef
    37.Kang, Z., Wang, X., Li, Y., Wang, Q., & Qi, Q. (2012). Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnology Letters, 34, 527–531.CrossRef
    38.Li, F., Wang, Y., Gong, K., Wang, Q., Liang, Q., & Qi, Q. (2014). Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiology Letters, 350, 209–215.CrossRef
    39.Panek, H., & O'Brian, M. R. (2002). A whole genome view of prokaryotic haem biosynthesis. Microbiology, 148, 2273–2282.CrossRef
    40.Lee, M. J., Kim, H. J., Lee, J. Y., Kwon, A. S., Jun, S. Y., Kang, S. H., & Kim, P. (2013). Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 23, 668–673.CrossRef
  • 作者单位:Junli Zhang (1) (2) (3)
    Zhen Kang (1) (2) (3)
    Wenwen Ding (1) (2) (3)
    Jian Chen (2) (3)
    Guocheng Du (2) (4)

    1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
    2. School of Biotechnology, Jiangnan University, Wuxi, 214122, China
    3. Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
    4. The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
5-Aminolevulinic acid (ALA) is a nonprotein amino acid that has been widely used in many fields. In this study, we developed a new process for ALA production by optimizing the in vivo heme biosynthesis pathway and the iron concentration during cultivation. With the addition of iron, co-overexpression of the heme synthesis pathway genes hemA, hemL, hemF, and hemD significantly increased the accumulation of ALA and cell biomass. Further experiments demonstrated that the increased ALA accumulation resulted from moderate repression of ALA dehydratase (encoded by hemB), which was caused by hemF overexpression. After the addition of an optimized concentration (7.5 mg/L) of iron, ALA production by the recombinant Escherichia coli LADF-6 strain that overexpressed hemA, hemL, hemD, and hemF increased to 2840 mg/L in flask cultures. After applying a batch fermentation strategy, the ALA concentration increased to 4.05 g/L, with a productivity of 0.127 g/L·h. The results showed that the moderate repression of the in vivo heme pathway enzyme ALA dehydratase and the simultaneous optimization of the in vitro iron ion concentration served to increase the production of ALA and cell biomass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700