用户名: 密码: 验证码:
Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge
详细信息    查看全文
  • 作者:Jing-Rong Cheng ; Xue-Ming Liu ; Zhi-Yi Chen
  • 关键词:Methane production ; Granular sludge ; DSARSH ; Sulfate ; Anaerobic digestion
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:178
  • 期:1
  • 页码:9-20
  • 全文大小:994 KB
  • 参考文献:1.Cheng, J. R., & Zhu, M. J. (2012). A novel co-culture strategy for lignocellulosic bioenergy production: a systematic review. International Journal of Modelling, Biochemical Medicine, 1(3), 166–193.
    2.Markovska, N., Klemes, J. J., Duic, N., Guzovic, Z., Mathiesen, B. V., Lund, H., & Yan, J. Y. (2014). Sustainable development of energy, water and environment systems. Applied Energy, 135, 597–599.CrossRef
    3.Yamasaki, Y., Kanno, M., Suzuki, Y., & Kaneko, S. (2013). Development of an engine control system using city gas and biogas fuel mixture. Applied Energy, 101, 465–474.CrossRef
    4.Zhu, J., Wan, C., & Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528.CrossRef
    5.Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.CrossRef
    6.Lei, Z., Chen, J., Zhang, Z., & Sugiura, N. (2010). Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresource Technology, 101(12), 4343–4348.CrossRef
    7.Song, Z., Yang, G., Liu, X., Yan, Z., Yuan, Y., & Liao, Y. (2014). Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. Plos One, 9(4), 1016–1017.
    8.Lu, Y., Lai, Q., Zhang, C., Zhao, H., Ma, K., Zhao, X., Chen, H. Z., Liu, D. H., & Xing, X. H. (2009). Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, 100(12), 2889–2895.CrossRef
    9.Lu, S. G., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences, 19(4), 416–420.CrossRef
    10.Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnology Progress, 20(3), 698–705.CrossRef
    11.Sun, Y., & Cheng, J. J. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology, 96(14), 1599–1606.CrossRef
    12.Oude Elferink, S. J. W. H., Visser, A., Hulshoff Pol, L. W., & Stams, A. J. M. (1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2-3), 119–136.CrossRef
    13.Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.CrossRef
    14.Moosvi, S., & Madamwar, D. (2007). An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Bioresource Technology, 98(17), 3384–3392.CrossRef
    15.Dilallo, R., & Albertson, O. E. (1961). Volatile Acids by Direct Titration. Journal of the Water Pollution Control Federation, 33(4), 356–365.
    16.Taita, S., Clarkeb, W. P., Kellera, J., & Batstone, D. J. (2009). Removal of sulfate from high-strength wastewater by crystallization. Water Research, 43, 762–772.CrossRef
    17.Gavala, H. N., Angelidaki, I., & Ahring, B. K. (2003). Kinetics and modeling of anaerobic digestion process. Advances in Biochemical Engineering/Biotechnology, 81, 57–93.CrossRef
    18.Percheron, G., Bernet, N., & Moletta, R. (1997). Start-up of anaerobic digestion of sulfate wastewater. Bioresource Technology, 61(1), 21–27.CrossRef
    19.Liu, Z. L., Moon, J., Andersh, B. J., Slininger, P. J., & Weber, S. (2008). Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(4), 743–753.CrossRef
    20.Larsson, S., Palmqvist, E., Hahn-Hagerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3–4), 151–159.CrossRef
    21.Kuo, W., & Shu, T. (2004). Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Journal of Hazardous Materials, 113(1-3), 149–157.CrossRef
    22.Isa, Z., Grusenmeyer, S., & Verstraete, W. (1986). Sulfate reduction relative to methane production in high-rate anaerobic digestion-technical aspect. Applied and Environmental Microbiology, 51(3), 572–579.
    23.Hilton, M. G., & Archer, D. B. (1998). Anaerobic digestion of a sulphate-rich molasses wastewater: inhibition of hydrogen sulphide production. Biotechnology and Bioengineering, 31(8), 885–888.CrossRef
    24.Saritpongteeraka, K., & Chaiprapat, S. (2008). Effects of pH adjustment by parawood ash and effluent recycle ratio on the performance of anaerobic baffled reactors treating high sulfate wastewater. Bioresource Technology, 99(18), 8987–8994.CrossRef
    25.Prochazka, J., Dolejs, P., Maca, J., & Dohanyos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447.CrossRef
    26.Zhu, H., Stadnyk, A., Beland, M., & Seto, P. (2008). Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology, 99(11), 5078–5084.CrossRef
    27.Zhao, C. Q., Yang, Q. H., Chen, W. Y., Li, H., & Zhang, H. (2011). Isolation of a sulfate reducing bacterium and its application in sulfate removal from tannery wastewater. African Journal of Biotechnology, 10(56), 11966–11971.
    28.Liang, F., Xiao, Y., & Zhao, F. (2013). Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical Engineering Journal, 218, 147–153.CrossRef
    29.Knobel, A. N., & Lewis, A. E. (2002). A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Research, 36(1), 257–265.CrossRef
    30.Pereira, M. A., Mota, M., & Alves, M. M. (2002). Operation of an anaerobic filter and an EGSB reactor for the treatment of an oleic acid-based effluent: influence of inoculum quality. Process Biochemistry, 37(9), 1025–1031.CrossRef
    31.Zhong, W. Z., Zhang, Z. Z., Luo, Y. J., Sun, S. S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 102, 11177–11182.CrossRef
    32.Bauer, A., Boch, P., Friedl, A., & Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 142, 50–55.CrossRef
    33.Wang, Z., Xu, F., & Li, Y. (2013). Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresource Technology, 144, 281–287.CrossRef
    34.Möeller, K., & Stinner, W. (2009). Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European Journal of Agronomy, 30(1), 1–16.CrossRef
    35.Wei, C., Wang, W., Deng, Z., & Wu, C. (2007). Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed. Journal of Environmental Sciences-China, 19(3), 264–270.CrossRef
  • 作者单位:Jing-Rong Cheng (1) (2)
    Xue-Ming Liu (1)
    Zhi-Yi Chen (1)

    1. Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People’s Republic of China
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 133 Yihenglu, Dongguanzhuang, Tianhe District, Guangzhou, 510640, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid–treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700