用户名: 密码: 验证码:
Effects of Sm2O3 Content on the Microstructure and Mechanical Properties of Post-Sintered Reaction-Bonded β-SiAlON
详细信息    查看全文
  • 作者:Yanjun Li ; Donghua Liu ; Cunfeng Zeng…
  • 关键词:ceramics ; mechanical properties ; reaction bonding ; SiAlON ; sintering
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:25
  • 期:3
  • 页码:1143-1149
  • 全文大小:1,596 KB
  • 参考文献:1.K. Jack, Sialons and Related Nitrogen Ceramics, J. Mater. Sci., 1976, 11(6), p 1135–1158CrossRef
    2.T. Ekstrom and M. Nygren, SiAlON Ceramics, J. Am. Ceram. Soc., 1992, 75(2), p 259–276CrossRef
    3.F.L. Riley, Silicon Nitride and Related Materials, J. Am. Ceram. Soc., 2000, 83(2), p 245–265CrossRef
    4.X.L. Wang, H.Y. Gong, Y.J. Zhang, Y.R. Feng, L. Zhang, and Y.J. Zhao, Effect of AlN Content on Properties of Hot-Press Sintered Sialon Ceramics, Ceram. Int., 2015, 41(3), p 4308–4311CrossRef
    5.J.F. Yang, Y. Beppu, G.J. Zhang, T. Ohji, and S. Kanzaki, Synthesis and Properties of Porous Single-Phase β’-SiAlON Ceramics, J. Am. Ceram. Soc., 2002, 85(7), p 1879–1881CrossRef
    6.Y.J. Li, H.L. Yu, H.Y. Jin, Z.Q. Shi, G.J. Qiao, and Z.H. Jin, Fast Heating Thermal Shock Test for β-SiAlON with Molten Metals as Heating Medium, Ceram. Int., 2015, 41(4), p 6117–6121CrossRef
    7.Y.J. Li, H.L. Yu, Z.Q. Shi, H.Y. Jin, G.J. Qiao, and Z.H. Jin, Synthesis of β-SiAlON/h-BN Nanocomposite by a Precursor Infiltration and Pyrolysis (PIP) Route, Mater. Lett., 2015, 139, p 303–306CrossRef
    8.N. Calis Acikbas, H. Yurdakul, H. Mandal, F. Kara, S. Turan, A. Kara, and B. Bitterlich, Effect of Sintering Conditions and Heat Treatment on the Properties, Microstructure and Machining Performance of α-β-SiAlON Ceramics, J. Eur. Ceram. Soc., 2012, 32(7), p 1321–1327CrossRef
    9.T. Ekström and P.O. Olsson, β-Sialon Ceramics Prepared at 1700 °C by Hot Isostatic Pressing, J. Am. Ceram. Soc., 1989, 72(9), p 1722–1724CrossRef
    10.J. Briggs, Pressureless Sintering of SiAlON Ceramics, Mater. Res. Bull., 1977, 12(11), p 1047–1055CrossRef
    11.T. Ekstrom, P.O. Kall, M. Nygren, and P.O. Olsson, Dense Single-Phase β-Sialon Ceramics by Glass-Encapsulated Hot Isostatic Pressing, J. Mater. Sci., 1989, 24(5), p 1853–1861CrossRef
    12.D. Kusano, Y. Noda, H. Shibasaki, H. Hyuga, Y. Zhou, and K. Hirao, Effects of Impurity Iron Content on Characteristics of Sintered Reaction-Bonded Silicon Nitride, Int. J. Appl. Ceram. Technol., 2013, 10(4), p 690–700CrossRef
    13.D. Kusano, S. Adachi, G. Tanabe, H. Hyuga, Y. Zhou, and K. Hirao, Effects of Impurity Oxygen Content in raw Si Powder on Thermal and Mechanical Properties of Sintered Reaction-Bonded Silicon Nitrides, Int. J. Appl. Ceram. Technol., 2012, 9(2), p 229–238CrossRef
    14.Y. Zhou, H. Hyuga, D. Kusano, Y. Yoshizawa, and K. Hirao, A Tough Silicon Nitride Ceramic with High Thermal Conductivity, Adv. Mater., 2011, 23(39), p 4563–4567CrossRef
    15.Y. Zhou, X.W. Zhu, K. Hirao, and Z. Lences, Sintered Reaction-Bonded Silicon Nitride with High Thermal Conductivity and High Strength, Int. J. Appl. Ceram. Technol., 2008, 5(2), p 119–126CrossRef
    16.I.W.M. Brown, R. Pompe, and R. Carlsson, Preparation of Sialons by the Nitrided Pressureless Sintering (NPS) Technique, J. Eur. Ceram. Soc., 1990, 6(3), p 191–200CrossRef
    17.H. Hyuga, K. Yoshida, N. Kondo, H. Kita, J. Sugai, H. Okano, and J. Tsuchida, Fabrication of Pressureless Sintered Dense β-SiAlON via a Reaction-Bonding Route with ZrO2 Addition, Ceram. Int., 2009, 35(5), p 1927–1932CrossRef
    18.H. Hyuga, N. Kondo, and H. Kita, Fabrication of Dense β-SiAlON Ceramics with ZrO2 Additions Via a Rapid Reaction-Bonding and Postsintering Route, J. Am. Ceram. Soc., 2011, 94(4), p 1014–1018CrossRef
    19.L.S. Wang, Y.C. Wang, Y. Fan, and F. Wu, The Pressureless Sintering of Sialon ceramics, J. Cent. South Univ. Technol., 2001, 32(3), p 277–279
    20.L.S. Wang, Z.F. Zhang, Y. Fan, and B.Y. Yin, Influence of Sintering Aids on Pressureless Sintering of Sialon Ceramics, Chin. J. Nonferr. Metals, 2001, 11(3), p 386–389
    21.F. Çalışkan, Z. Tatlı, A. Genson, and S. Hampshire, Pressurelesss Sintering of β-SiAlON Ceramic Compositions Using Fluorine and Oxide Additive System, J. Eur. Ceram. Soc., 2012, 32(7), p 1337–1342CrossRef
    22.G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64(9), p 533–538CrossRef
    23.Y. Li, H. Yu, H. Jin, D. Liu, G. Qiao, Z. Jin, and Z. Shi, Effects of FeMo Alloy on Nitridation and Mechanical Properties of Reaction Bonded β-Sialon/FeMo Ceramic Composites, J. Alloys Compd., 2014, 616, p 639–645CrossRef
    24.R. German, P. Suri, and S. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44(1), p 1–39CrossRef
    25.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976
    26.E.Q. He, J.S. Yue, L. Fan, C. Wang, and H.J. Wang, Synthesis of Single Phase β-SiAlON Ceramics by Reaction-Bonded Sintering Using Si and Al2O3 as Raw Materials, Scr. Mater., 2011, 65(2), p 155–158CrossRef
    27.P. Chantikul, S.J. Bennison, and B.R. Lawn, Role of Grain Size in the Strength and R-Curve Properties of Alumina, J. Am. Ceram. Soc., 1990, 73(8), p 2419–2427CrossRef
    28.A. Krell and A. Bales, Grain Size-Dependent Hardness of Transparent Magnesium Aluminate Spinel, Int. J. Appl. Ceram. Technol., 2011, 8(5), p 1108–1114CrossRef
    29.R. Chaim and M. Hefetz, Effect of Grain Size on Elastic Modulus and Hardness of Nanocrystalline ZrO2-3 wt% Y2O3 Ceramic, J. Mater. Sci., 2004, 39(9), p 3057–3061CrossRef
  • 作者单位:Yanjun Li (1)
    Donghua Liu (1)
    Cunfeng Zeng (2)
    Zhongqi Shi (3)
    Zhihao Jin (3)

    1. College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an, 710055, China
    2. State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang, 471039, China
    3. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
β-SiAlON materials were fabricated by a reaction bonding combining post-sintering route using raw materials of Si, Al2O3, AlN, etc. Sm2O3 was used as sintering additive with the content of 0, 2, 4, and 6 wt.%, respectively. The reaction-bonded β-SiAlON (RB-β-SiAlON) were post sintered at 1750 °C for 6 h. XRD results showed that the phase composition of both RB-β-SiAlON and post-sintered RB-β-SiAlON (PSRB-β-SiAlON) was β-SiAlON. For RB-β-SiAlON, the apparent porosity was decreased with the increase of Sm2O3 content, while the bending strength (σf) and Vicker’s hardness (HV10) was increased accordingly. After the post-sintering procedure, nearly full densified PSRB-β-SiAlON was obtained and the mechanical properties were significantly improved with the addition of Sm2O3 additive. The σf and HV10 of the PSRB-β-SiAlON (4 wt.% Sm2O3) achieved 520 MPa and 16.4 GPa, respectively, which were as 3.5 and 6.3 times high as those of the corresponding RB-β-SiAlON. The Young’s modulus (E) and the fracture toughness (K IC) of the dense PSRB-β-SiAlON were increased with the increase of the Sm2O3 content.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700