用户名: 密码: 验证码:
TiO2 nanosheets with exposed {001} facets for photocatalytic applications
详细信息    查看全文
  • 作者:Chimmikuttanda Ponnappa Sajan ; Swelm Wageh ; Ahmed. A. Al-Ghamdi ; Jiaguo Yu…
  • 关键词:TiO2 ; nanosheets ; {001} facets ; photocatalysis
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:3-27
  • 全文大小:7,543 KB
  • 参考文献:[1]Markham, A. A Brief History of Pollution; St. Martin’s Press: New York, 1994.
    [2]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRef
    [3]Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRef
    [4]Diebold, U. Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A 2003, 76, 681–687.CrossRef
    [5]Tanemura, S.; Miao, L.; Wunderlich, W.; Tanemura, M.; Mori, Y.; Toh, S.; Kaneko, K. Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: A review. Sci. Technol. Adv. Mater. 2005, 6, 11–17.CrossRef
    [6]Rivera, A. P.; Tanaka, K.; Hisanaga, T. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B-Environ. 1993, 3, 37–44.CrossRef
    [7]Wang, Y. F.; Li, L. P.; Huang, X. S.; Li, Q.; Li, G. S. New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 2015, 5, 34302–34313.CrossRef
    [8]Fernández-Werner, L.; Faccio, R.; Juan, A.; Pardo, H.; Montenegro, B.; Mombrú, Á. W. Ultrathin (001) and (100) TiO2(B) sheets: Surface reactivity and structural properties. Appl. Surf. Sci. 2014, 290, 180–187.CrossRef
    [9]Kitazawa, S.; Choi, Y.; Yamamoto, S.; Yamaki, T. Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films 2006, 515, 1901–1904.CrossRef
    [10]Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.CrossRef
    [11]Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.CrossRef
    [12]Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874.CrossRef
    [13]Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.CrossRef
    [14]Liu, Z. Y.; Misra, M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 2010, 4, 2196–2200.CrossRef
    [15]Bavykin, D. V.; Walsh, F. C. Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 2009, 977–997.CrossRef
    [16]Wu, Y. E.; Wang, D. S.; Li, Y. D. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 2014, 43, 2112–2124.CrossRef
    [17]Thomas, J. M. Designing catalysts for tomorrow’s environmentally benign processes. Top. Catal. 2014, 57, 1115–1123.CrossRef
    [18]Lei, W. Y.; Zhang, T. T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M. H. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold. ACS Catal. 2015, 5, 4385–4393.CrossRef
    [19]Zhang, T. T.; Lei, W. Y.; Liu, P.; Rodriguez, J. A.; Yu, J. G.; Qi, Y.; Liu, G.; Liu, M. H. Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires. Chem. Sci. 2015, 6, 4118–4123.CrossRef
    [20]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453, 638–642.CrossRef
    [21]Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.CrossRef
    [22]Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.CrossRef
    [23]Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751–6761.CrossRef
    [24]Lv, K. L.; Cheng, B.; Yu, J. G.; Liu, G. Fluorine ionsmediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 5349–5362.CrossRef
    [25]Liu, B. T.; Jin, C. H.; Ju, Y.; Peng, L. L.; Tian, L. L.; Wang, J. B.; Zhang, T. J. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {001} facets. Appl. Surf. Sci. 2014, 311, 147–157.CrossRef
    [26]Liu, S. W.; Yu, J. G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085–4093.CrossRef
    [27]Fang, W. Q.; Gong, X. Q.; Yang, H. G. On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2011, 2, 725–734.CrossRef
    [28]Fan, J. J.; Cai, W. Q.; Yu, J. G. Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: Equilibrium, kinetic, and thermodynamic studies. Chem.—Asian J. 2011, 6, 2481–2490.CrossRef
    [29]Xu, H.; Reunchan, P.; Ouyang, S. X.; Tong, H.; Umezawa, N.; Kako, T.; Ye, J. H. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem. Mater. 2013, 25, 405–411.CrossRef
    [30]Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 2012, 4, 613–620.CrossRef
    [31]Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.CrossRef
    [32]Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.CrossRef
    [33]Akpan, U. G.; Hameed, B. H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A-Gen. 2010, 375, 1–11.CrossRef
    [34]Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002.CrossRef
    [35]Nadeem, A. M.; Waterhouse, G. I. N.; Idriss, H. The reactions of ethanol on TiO2 and Au/TiO2 anatase catalysts. Catal. Today 2012, 182, 16–24.CrossRef
    [36]Chin, S.; Park, E.; Kim, M.; Bae, G. N.; Jurng, J. Synthesis and visible light photocatalytic activity of transition metal oxide (V2O5) loading on TiO2 via a chemical vapor condensation method. Mater. Lett. 2012, 75, 57–60.CrossRef
    [37]Rupa, A. V.; Manikandan, D.; Divakar, D.; Sivakumar, T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J. Hazard. Mater. 2007, 147, 906–913.CrossRef
    [38]Diak, M.; Grabowska, E.; Zaleska, A. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {001} facets. Appl. Surf. Sci. 2015, 347, 275–285.CrossRef
    [39]Wang, H. Q.; Cao, S.; Fang, Z.; Yu, F. X.; Liu, Y.; Weng, X. L.; Wu, Z. B. of NOby NH3. Appl. Surf. Sci. 2015, 330, 245–252.CrossRef
    [40]Papadimitriou, V. C.; Stefanopoulos, V. G.; Romanias, M. N.; Papagiannakopoulos, P.; Sambani, K.; Tudose, V.; Kiriakidis, G. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 2011, 520, 1195–1201.CrossRef
    [41]Zhu, J. F.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M. Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 2006, 180, 196–204.CrossRef
    [42]Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 2004, 108, 19384–19387.CrossRef
    [43]Choi, Y.; Umebayashi, T.; Yoshikawa, M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 2004, 39, 1837–1839.CrossRef
    [44]Rockafellow, E. M.; Stewart, L. K.; Jenks, W. S. Is sulfurdoped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B-Environ. 2009, 91, 554–562.CrossRef
    [45]Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613–615.CrossRef
    [46]Yang, X. H.; Li, Z.; Liu, G.; Xing, J.; Sun, C. H.; Yang, H. G.; Li, C. Z. Ultra-thin anatase TiO2 nanosheets dominated with {001} facets: Thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm 2011, 13, 1378–1383.CrossRef
    [47]Yu, J. G.; Fan, J. J.; Lv, K. L. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144–2149.CrossRef
    [48]Xiang, Q. J.; Yu, J. G. Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant {001} facets. Chin. J. Catal. 2011, 32, 525–531.CrossRef
    [49]Yang, W. G.; Li, J. M.; Wang, Y. L.; Zhu, F.; Shi, W. M.; Wan, F. R.; Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809–1811.
    [50]Zhu, J.; Wang, J. G.; Lv, F. J.; Xiao, S. X.; Nuckolls, C.; Li, H. X. Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J. Am. Chem. Soc. 2013, 135, 4719–4721.CrossRef
    [51]Liu, S. W.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 2010, 132, 11914–11916.CrossRef
    [52]Yu, J. X.; Zhang, L.; Huang, B. B.; Liu, H. X. Synthesis of spherical TiO2 made up of high reactive facets of (001). Int. J. Electrochem. Sci. 2013, 8, 5810–5816.
    [53]Zhang, D. Q.; Li, G. S.; Wang, H. B.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 2010, 10, 1130–1137.CrossRef
    [54]Yu, J. G.; Xiang, Q. J.; Ran, J. R.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 2010, 12, 872–879.CrossRef
    [55]Wen, C. Z.; Jiang, H. B.; Qiao, S. Z.; Yang, H. G.; Lu, G. Q. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052–7061.CrossRef
    [56]Zhao, Z.; Sun, Z. C.; Zhao, H. F.; Zheng, M.; Du, P.; Zhao, J. L.; Fan, H. Y. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J. Mater. Chem. 2012, 22, 21965–21971.CrossRef
    [57]Lee, W. J.; Sung, Y. M. Synthesis of anatase nanosheets with exposed (001) facets via chemical vapor deposition. Cryst. Growth Des. 2012, 12, 5792–5795.CrossRef
    [58]Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540.CrossRef
    [59]Amano, F.; Yasumoto, T.; Prieto-Mahaney, O. O.; Uchida, S.; Shibayama, T.; Terada, Y.; Ohtani, B. Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Top Catal. 2010, 53, 455–461.CrossRef
    [60]Amano, F.; Prieto-Mahaney, O. O.; Terada, Y.; Yasumoto, T.; Shibayama, T.; Ohtani, B. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem. Mater. 2009, 21, 2601–2603.CrossRef
    [61]Wu, B. H.; Guo, C. Y.; Zheng, N. F.; Xie, Z. X.; Stucky, G. D. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc. 2008, 130, 17563–17567.CrossRef
    [62]Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.CrossRef
    [63]Wang, C. H.; Zhang, X. T.; Liu, Y. C. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorinefree route and topotactic transformation. Nanoscale 2014, 6, 5329–5337.CrossRef
    [64]Guo, W.; Zhang, F.; Lin, C.; Wang, Z. L. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 2012, 24, 4761–4764.CrossRef
    [65]Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 2011, 3, 2943–2949.CrossRef
    [66]Tao, Y.; Wu, C. Y.; Mazyck, D. W. Microwave-assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Ind. Eng. Chem. Res. 2006, 45, 5110–5116.CrossRef
    [67]Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core–shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025–4031.CrossRef
    [68]Eder, D.; Windle, A. H. Carbon–inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv. Mater. 2008, 20, 1787–1793.CrossRef
    [69]Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.CrossRef
    [70]Byrappa, K.; Dayananda, A. S.; Sajan, C. P.; Basavalingu, B.; Shayan, M. B.; Soga, K.; Yoshimura, M. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J. Mater. Sci. 2008, 43, 2348–2355.CrossRef
    [71]Gui, M. M.; Chai, S. P.; Mohamed, A. R. Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane. Appl. Surf. Sci. 2014, 319, 37–43.CrossRef
    [72]Li, B. B.; Zhao, Z. B.; Gao, F.; Wang, X. Z.; Qiu, J. S. Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Appl. Catal. B-Environ. 2014, 147, 958–964.CrossRef
    [73]Yu, X. J.; Liu, J. J.; Yu, Y. C.; Zuo, S. L.; Li, B. S. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 2014, 68, 718–724.CrossRef
    [74]Liao, K. H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K. A.; Macosko, C. W. Aqueous only route toward graphene from graphite oxide. ACS Nano 2011, 5, 1253–1258.CrossRef
    [75]Zeller, P.; Dä nhardt, S.; Gsell, S.; Schreck, M.; Wintterlin, J. Scalable synthesis of graphene on single crystal Ir(111) films. Surf. Sci. 2012, 606, 1475–1480.CrossRef
    [76]Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.CrossRef
    [77]Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRef
    [78]Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.
    [79]Li, D.; Mü ller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.CrossRef
    [80]Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Jiang, X.; Li, C. Z. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 2011, 35, 353–359.CrossRef
    [81]Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 2011, 5, 590–596.CrossRef
    [82]Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25- graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.CrossRef
    [83]Lee, J. S.; You, K. H.; Park, C. B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1084–1088.CrossRef
    [84]Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 2010, 1, 2222–2227.CrossRef
    [85]Xiang, Q. J.; Cheng, B.; Yu, J. G. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem., Int. Ed. 2015, 54, 11350–11366.CrossRef
    [86]Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901.CrossRef
    [87]Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492–3495.CrossRef
    [88]Huang, P. Y.; Kurasch, S.; Srivastava, A.; Skakalova, V.; Kotakoski, J.; Krasheninnikov, A. V.; Hovden, R.; Mao, Q. Y.; Meyer, J. C.; Smet, J. et al. Direct imaging of a twodimensional silica glass on graphene. Nano Lett. 2012, 12, 1081–1086.
    [89]Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.CrossRef
    [90]Gu, L.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085–3093.CrossRef
    [91]Liu, L. C.; Liu, Z.; Liu, A. N.; Gu, X. R.; Ge, C. Y.; Gao, F.; Dong, L. Engineering the TiO2–graphene interface to enhance photocatalytic H2 production. ChemSusChem 2014, 7, 618–626.CrossRef
    [92]Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678.CrossRef
    [93]Dai, K.; Lu, L. H.; Liu, Q.; Zhu, G. P.; Liu, Q. Z.; Liu, Z. L. Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Trans. 2014, 43, 2202–2210.CrossRef
    [94]Kment, S.; Kmentova, H.; Kluson, P.; Krysa, J.; Hubicka, Z.; Cirkva, V.; Gregora, I.; Solcova, O.; Jastrabik, L. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J. Colloid Interface Sci. 2010, 348, 198–205.CrossRef
    [95]Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C. 2010, 114, 13118–13125.CrossRef
    [96]Zhu, S. Y.; Liang, S. J.; Gu, Q.; Xie, L. Y.; Wang, J. X.; Ding, Z. X.; Liu, P. Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl. Catal. B-Environ. 2012, 119–120, 146–155.CrossRef
    [97]Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30–35.CrossRef
    [98]Long, J. L.; Chang, H. J.; Gu, Q.; Xu, J.; Fan, L. Z.; Wang, S. C.; Zhou, Y. G.; Wei, W.; Huang, L.; Wang, X. X. et al. Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ. Sci. 2014, 7, 973–977.CrossRef
    [99]Aslam, M.; Fu, L.; Su, M.; Vijayamohanna, K.; Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795–1797.CrossRef
    [100]Liu, L. C.; Gu, X. R.; Sun, C. Z.; Li, H.; Deng, Y.; Gao, F.; Dong, L. In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale 2012, 4, 6351–6359.CrossRef
    [101]Xiang, Q. J.; Yu, J. G.; Wang, W. G.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 6906–6908.CrossRef
    [102]Liu, L. C.; Ji, Z. Y.; Zou, W. X.; Gu, X. R.; Deng, Y.; Gao, F.; Tang, C. J.; Dong, L. In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS. Catal. 2013, 3, 2052–2061.CrossRef
    [103]Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.CrossRef
    [104]Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 2003, 107, 5483–5486.CrossRef
    [105]Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A-Gen. 2004, 265, 115–121.CrossRef
    [106]Lu, N.; Quan, X.; Li, J. Y.; Chen, S.; Yu, H. T.; Chen, G. H. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007, 111, 11836–11842.CrossRef
    [107]Zhou, P.; Wu, J. H.; Yu, W. L.; Zhao, G. H.; Fang, G. J.; Cao, S. W. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl. Surf. Sci. 2014, 319, 167–172.CrossRef
    [108]Wang, C.; Hu, Q. Q.; Huang, J. Q.; Zhu, C.; Deng, Z. H.; Shi, H. L.; Wu, L.; Liu, Z. G.; Cao, Y. G. Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation. Appl. Surf. Sci. 2014, 292, 161–164.CrossRef
    [109]Wang, W.; Ni, Y. R.; Lu, C. H.; Xu, Z. Z. Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N–F co-doped TiO2 nanosheets. Appl. Surf. Sci. 2014, 290, 125–130.CrossRef
    [110]Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.CrossRef
    [111]Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2011, 13, 4853–4861.CrossRef
    [112]Wang, W.; Lu, C. H.; Su, M. X.; Ni, Y. R.; Xu, Z. Z. Synthesis, characterization, and nitrogen concentration depended visible-light photoactivity of nitrogen-doped TiO2 nanosheets with dominant (001) facets. Chin. J. Catal. 2012, 33, 629–636.CrossRef
    [113]Wang, B.; Leung, M. K. H.; Lu, X. Y.; Chen, S. Y. Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 2013, 112, 1190–1197.CrossRef
    [114]Wang, B.; Lu, X. Y.; Xuan, J.; Leung, M. K. H. Facile synthesis and photocatalytic disinfection of boron self-doped TiO2 nanosheets. Mater. Lett. 2014, 115, 57–59.CrossRef
    [115]Yu, J. G.; Dai, G. P.; Xiang, Q. J.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049–1057.CrossRef
    [116]Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.CrossRef
    [117]Brown, D.; Hitz, H. R.; Schä fer, L. The assessment of the possible inhibitory effect of dyestuffs on aerobic waste-water bacteria experience with a screening test. Chemosphere 1981, 10, 245–261.CrossRef
    [118]Wang, J.; Jiang, Y. F.; Zhang, Z. H.; Zhao, G.; Zhang, G.; Ma, T.; Sun, W. Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors. Desalination 2007, 216, 196–208.CrossRef
    [119]Muruganandham, M.; Swaminathan, M. Advanced oxidative decolourisation of reactive yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes-a comparative study. Sep. Purif. Technol. 2006, 48, 297–303.CrossRef
    [120]Boye, B.; Dieng, M. M.; Brillas, E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 2002, 36, 3030–3035.CrossRef
    [121]Ince, N. H.; Tezcanlí, G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments 2001, 49, 145–153.CrossRef
    [122]Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobio. C 2012, 13, 224–245.CrossRef
    [123]Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem., Int. Ed. 2013, 52, 812–847.CrossRef
    [124]Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169–189.CrossRef
    [125]Fujishima, A.; Zhang, X. T; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.CrossRef
    [126]Yu, X. X.; Yu, J. G.; Cheng, B.; Jaroniec, M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C 2009, 113, 17527–17535.CrossRef
    [127]Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 2007, 17, 1303–1310.CrossRef
    [128]Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B 2005, 109, 5143–5149.CrossRef
    [129]Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401.CrossRef
    [130]Monkhorst, H. J.; Pack, J. D. Special points for brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRef
    [131]Xiang, Q. J.; Lv, K. L.; Yu, J. G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B-Environ. 2010, 96, 557–564.CrossRef
    [132]Liu, S. W.; Yu, J. G.; Wang, W. G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 2010, 12, 12308–12315.CrossRef
    [133]Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B-Environ. 2010, 94, 295–302.CrossRef
    [134]Schmidt, C. M.; Buchbinder, A. M.; Weitz, E.; Geiger, F. M. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry. J. Phys. Chem. A 2007, 111, 13023–13031.CrossRef
    [135]Schmidt, C. M.; Weitz, E.; Geiger, F. M. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry. Langmuir 2006, 22, 9642–9650.CrossRef
    [136]Vincent, G.; Marquaire, P. M.; Zahraa, O. Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. J. Photochem. Photobiol. A 2008, 197, 177–189.CrossRef
    [137]Lv, K. L.; Xiang, Q. J.; Yu, J. G. Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets. Appl. Catal. B-Environ. 2011, 104, 275–281.CrossRef
    [138]Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 2011, 47, 4532–4534CrossRef
    [139]Sofianou, M. V.; Psycharis, V.; Boukos, N.; Vaimakis, T.; Yu, J. G.; Dillert, R.; Bahnemann, D.; Trapalis, C. Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl. Catal. B-Environ. 2013, 142–143, 761–768.CrossRef
    [140]Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 2007, 11, 401–425.
    [141]Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793.CrossRef
    [142]Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.CrossRef
    [143]Qi, L. F.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdSsensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 2011, 13, 8915–8923.CrossRef
    [144]Jenkinson, D. S.; Adams, D. E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306.CrossRef
    [145]Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.CrossRef
    [146]Lackner, K. S. A guide to CO2 sequestration. Science 2003, 300, 1677–1678.CrossRef
    [147]Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.; Juanes, R. Lifetime of carbon capture and storage as a climatechange mitigation technology. Proc. Natl. Acad. Sci. USA 2012, 109, 5185–5189.CrossRef
    [148]Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 2012, 256, 1384–1405.CrossRef
    [149]Yuan, L.; Xu, Y. J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154–167.CrossRef
    [150]Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.CrossRef
    [151]Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.CrossRef
    [152]Chen, L.; Graham, M. E.; Li, G. H.; Gentner, D. R.; Dimitrijevic, N. M.; Gray, K. A. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films 2009, 517, 5641–5645.CrossRef
    [153]Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 2008, 253, 105–110.CrossRef
    [154]Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.CrossRef
    [155]Anop, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632–2636.CrossRef
    [156]Xu, Q. L.; Yu, J. G.; Zhang, J.; Zhang, J. F.; Liu, G. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem. Commun. 2015, 51, 7950–7953.CrossRef
    [157]Wang, H. X.; Bell, J.; Desilvestro, J.; Bertoz, M.; Evans, G. Effect of inorganic iodides on performance of dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 15125–15131.CrossRef
    [158]Wang, H. X.; Liu, M. N.; Yan, C.; Bell, J. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001]_facet exposed. Beilstein J. Nanotechnol. 2012, 3, 378–387.CrossRef
    [159]Fan, J. J.; Liu, S. W.; Yu, J. G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 2012, 22, 17027–17036.CrossRef
    [160]Zhang, H. M.; Han, Y. H.; Liu, X. L.; Liu, P. R.; Yu, H.; Zhang, S. Q.; Yao, X. D.; Zhao, H. J. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395–8397.CrossRef
  • 作者单位:Chimmikuttanda Ponnappa Sajan (1)
    Swelm Wageh (2) (3)
    Ahmed. A. Al-Ghamdi (2)
    Jiaguo Yu (1) (2)
    Shaowen Cao (1)

    1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
    2. Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
    3. Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
TiO2 nanosheets with highly reactive {001} facets ({001}-TiO2) have attracted great attention in the fields of science and technology because of their unique properties. In recent years, many efforts have been made to synthesize {001}-TiO2 and to explore their applications in photocatalysis. In this review, we summarize the recent progress in preparing {001}-TiO2 using different techniques such as hydrothermal, solvothermal, alcohothermal, chemical vapor deposition (CVD), and sol gel-based techniques. Furthermore, the enhanced efficiency of {001}-TiO2 by modification of carbon materials, surface deposition of transition metals, and non-metal doping is reviewed. Then, the applications of {001}-TiO2-based photocatalysts in the degradation of organic dyes, hydrogen evolution, carbon dioxide (CO2) reduction, bacterial disinfection, and dye-sensitized solar cells are summarized. We believe this entire review on TiO2 nanosheets with {001} facets can further inspire researchers in associated fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700